Applications

- 5 V to 3.3 V translation in mixed-supply environment
- Hot-swap interface
- Logic replacement
- Bus isolation

General Description

The VS3245 and VS32245 are high-speed TTL-compatible 8-bit bus switches. The VS3245 contains eight high-speed bus switches, with a common active low enable (/OE). The low ON resistance of the VS3245 allows inputs to be connected to outputs, without adding propagation delay and without generating additional signal noise. The VS32245 has 25Ω resistors in series with the switches to reduce ground-bounce noise and signal reflection.
The VS3245 and VS32245 bus switches are function and pinout compatible with QS3245 and CBT3245 switches. They enable 5 V to 3.3 V translation when used with a diode in the power supply line. In addition, the high off-isolation in the 'disable' mode makes VS3245 and VS32245 ideal interface elements for hot-swap applications.

Features

- Enhanced N-FET with no DC path to V_{CC} or GND in normal operating signal voltage range.
- Low impedance bidirectional data flow: 5Ω (VS3245) and 25Ω (VS32245)
- Pin-compatible with QS3245 and CBT3245 switches.
- Near-zero propagation delay
- Zero added ground bounce or signal noise
- TTL-compatible control signals
- Undershoot clamp diodes on all switch and control pins
- ESD rating >2000V (Human Body Model) or >200V (Machine Model)
- Latch-up current >100mA
- Available in 150 -mil wide QSOP package

Figure 1. Functional Block Diagram

Figure 2. Pin Configuration
(All Pins Top View)

Table 1. Pin Description

Name	I/O	Description
$A_{0}-A_{7}$	I/O	Data Input or Output
$/ O E$	I	Enable Input
$B_{0}-B_{7}$	I/O	Data Output or Input

Table 2. Function Table

Input $/ O E$	Path	Function
H	$H i$ Impedance	Disable all switches
L	$\mathrm{A}_{\mathrm{n}}<->\mathrm{B}_{\mathrm{n}}$	$\mathrm{A}_{\mathrm{n}}=\mathrm{B}_{\mathrm{n}}$

Table 3. Absolute Maximum Ratings

Supply Voltage to Ground................................-0.5V to +7.0V
DC Switch Voltage Vs....................................-0.5V to +7.0V
AC Input Voltage (Pulse Width < 20ns)............................3.0V
DC Output Sink Current per Switch Pin.......................... 120 mA
Maximum Power Dissipation..................................0.5 Watts
Storage Temperature................................... $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note ABSOLUTE MAXIMUM CONTINUOUS RATINGS are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Correct functional operation while operating in the absolute maximum rated conditions is not implied.

Table 4. Capacitance

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$

Pins	QSOP		
Typ	Max	Unit	
Control Inputs	4	5	pF
VSwitch Channels (Switch OFF)	5	7	pF

Note Capacitance is guaranteed, but not production tested. Total capacitance of a path, when the switch is closed, is the sum of the switch terminal capacitances.

Table 5. Recommended Operating Conditions

Symbol	Parameter	Conditions	Min	Typ	Max	Units
V_{CC}	Power supply voltage		4.5		5.5	V
$\mathrm{~V}_{\mathrm{IL}}$	Low level input voltage		-0.5		0.8	V
$\mathrm{~V}_{\mathrm{IH}}$	High level input voltage		2.0		5.5	V
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature		-40		85	${ }^{\circ} \mathrm{C}$

Table 6. Electrical Characteristics Over Recommended Operating Free-air Temperature Range

Notes:

1. Typical values are specified at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. Ron is measured by forcing specified current into the 'output' node of the switch with the 'input' node of the switch at the the specified voltage

Table 7. Power Supply Characteristics Over Recommended Operating Free-air Temperature Range

Symbol	Parameter	Test Conditions ${ }^{(1)}$	Max	Units
ICCQ	Quiescent Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \quad / \mathrm{OE}=\mathrm{V}_{\text {cc }}$ or GND, $\mathrm{f}=0$	1	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\mathrm{CC}}$	Power Supply Current per Input High (Control Input) ${ }^{(2)}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V}, \mathrm{f}=0$	1.5	mA
Q CCD	Dynamic Power Supply Current ${ }^{(3)}$	$V_{C C}=$ Max, Switch pins open, Control Inputs toggling at 50% duty cycle	0.25	$\mathrm{mA} / \mathrm{MHz}$

Notes:

1. For conditions shown as Min or Max, use the appropriate values per Recommended Operating Conditions.
2. Per TTL-driven control input. All other control inputs at GND. Switch I/O pins do not contribute to $\Delta I C C$.
3. This parameter represents the average DC current resulting from the switching of internal nodes of the device at a given frequency. The switch I/O pins make insignificant contribution to the dynamic power supply current of the device. This parameter is guaranteed, but not production tested.

Figure 3. VOLTAGE TRANSLATION

Figure 5. Voltage Translation Application

Table 8. Switching Characteristics Over Operating Range
$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$
$C_{\text {LOAD }}=50 p F, R_{\text {LOAD }}=500 \Omega$ unless otherwise stated.

	Description ${ }^{(1)}$	VS3245		VS32245		Units
Symbol		$\mathbf{M i n}{ }^{(3)}$	Max	Min ${ }^{(3)}$	Max	
tPLH, tPHL	Data Propagation Delay ${ }^{(2,3)}$ through the switch		0.25		1.25	ns
tPzH, tPzL	Switch Turn-on Delay, /OE to $\mathrm{A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}$	0.5	5.6	0.5	6.6	ns
tPLZ, tPHZ	Switch Turn-off Delay /OE to A_{n}, B_{n}	0.5	4.5	0.5	4.5	ns

Notes:

1. See test circuits and waveforms.
2. This parameter is the calculated theoretical RC time constant of ON-state resistance of the switch and the specified load capacitance when driven by an ideal voltage source (zero source impedance). This time-constant is on the order of 0.25 ns for VS3245 and 1.25 ns for VS32245. Since this time-constant is much smaller than rise/fall times of typical driving signals, it adds very little propagation delay to the system.
3. This parameter is guaranteed, but not production tested.

Figure 6. AC Test Circuit and Switching Waveforms

AC Test Circuit

Load Switch Position

TEST	S1
t PLH $^{c \mid}$ tPHL	Open
$t_{\text {PLZ }}$, t PZL	Closed
$t_{\text {PHZ }}, t_{\text {PZH }}$	Open

Input Conditions

Input voltage $=0 \mathrm{~V}$ to 3.0 V
$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=2.5 \mathrm{~ns}$ (10% to 90%)

Switching Waveforms

Propagation Delay

Enable and Disable Times

Ordering Information

Part Number	Marking	Shipping/Packaging	No. of Pins	Package	Temperature
VS3245Q	VS3245Q	Tubes	20	QSOP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
VS3245QX	VS3245Q	Tape \& Reel	20	QSOP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
VS32245Q	VS32245Q	Tubes	20	QSOP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
VS32245QX	VS32245Q	Tape \& Reel	20	QSOP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

