13-MEMORY TONE/PULSE DIALER WITH HANDFREE AND HOLD FUNCTIONS

GENERAL DESCRIPTION

The W91350N series are tone/pluse switchable telephone dialers with thirteen memories, hold function, and a handfree dialing control circuit. Fabricated using CMOS technology, the W91350N series offer good performance in low-voltage and low-power applications.

FEATURES

- DTMF/pulse switchable dialer
- Two by 32-digit redial memory and save memory
- Three by 16-digit one-touch direct repertory memory
- Ten by 16-digit two-touch direct repertory memory
- Cascaded dialing allowed, with unlimited dialing length
- Pulse-to-tone (*/T) keypad for long distance call operation
- Uses 5×5 keyboard
- Easy operation with redial, flash, pause, and */T keypads
- Pause, $\mathrm{P} \rightarrow \mathrm{T}$ (pulse-to-tone) can be stored as a digit in memory
- Dialing rate (10 ppS or 20 ppS) is selectable by bonding option
- On-hook debounce time: 150 msec .
- Minimum tone output duration: 93 msec (W91354AN: 87 mS)
- Minimum intertone pause: 93 msec (W91354AN: 87 mS)
- Flash break time $(73,100,300,600 \mathrm{msec})$ selectable by keypad; pause time is 1.0 sec .
- Make/break ratio (40:60 or 33.3:66.7) selectable by MODE pin
- On-chip power-on reset
- Uses 3.579545 MHz crystal or ceramic resonator
- Packaged in 18 or 20-pin plastic DIP
- The different dialers in the W91350N series are shown in the following table:

TYPE NO.	REPLACEMENT TYPE NO.	PULSE $(\mathbf{p p S})$	FLASH $(\mathbf{m S})$	M/B	HANDFREE DIALING	PACKAGE (PINS)
W91350N	W91350	10	$600 / 300 / 73 / 100$	Pin	-	18
	W91351					
W91352N	W91352	20	$600 / 300 / 73 / 100$	Pin	-	18
W91350AN	W91350A	10	$600 / 300 / 73 / 100$	Pin	Yes	20
	W91351A					
W91352AN	W91352A	20	$600 / 300 / 73 / 100$	Pin	Yes	20
W91354AN	New type	10	$600 / 300 / 73 / 100$	Pin	Yes	20

Note: The W91354AN is for use in France only. The pause time is not added in pulse-to-tone function mode.

W91350N SERIES

PIN CONFIGURATIONS

PIN DESCRIPTION

SYMBOL	18-PIN	20-PIN	I/O	FUNCTION
Column-	$1-4$ Row Inputs $15-18$	$1-4$ $\&$ $17-20$	I	The keyboard inputs may be used with either a standard 5×5 keyboard or an inexpensive single contact (Form A) keyboard. Electronic input from a μ C can also be used. A valid key in is defined as a single row being connected to a single column.
XT, $\overline{\text { XT }}$	7,8	7,8	I, O	A built-in inverter provides oscillation with an inexpensive 3.579545 MHz crystal or ceramic resonator.
T/P MUTE	9	9	O	The T/P $\overline{\text { MUTE is a conventional CMOS N-channel open }}$ drain output. The output transistor is switched on during dialing sequence and flash break time. Otherwise, it is switched off.
MODE	13	15	I	Pulling mode pin to Vss places the dialer in tone mode. Pulling mode pin to VDD places the dialer in pulse mode with M/B ratio of 40:60 (10 ppS, except for W91352N/352AN = 20 ppS). Floating mode pin places the dialer in pulse mode with M/B ratio of 33.3:66.7 (10 ppS, except for W91352N/352AN $=$ 20 ppS).
$\overline{\text { HKS }}$	10	12	I	Hook switch input. HKS $=$ VDD: On-hook state. Chip in sleeping mode, no operation. HKS $=$ Vss: Off-hook state. Chip is enabled for normal operation. HKS pin is pulled to VDD by an internal resistor.

W91350N SERIES

Pin Description, continued

W91350N SERIES

BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION
Keyboard Operation

C1	C2	C3	C4	$\overline{\mathrm{DP}} / \overline{\mathrm{C} 5}$
1	2	3	S	M1
4	5	6	F4	M2
7	8	9	A	M3
*/T	0	\#	R/P	SAVE
F1	F2	F3	H	

- S: Store function key
- H: Hold function key
- A: Indirect repertory memory dialing function key
- R/P: Redial and pause function key
- SAVE: Save function key
- */T: * in tone mode and $\mathrm{P} \rightarrow \mathrm{T}$ in pulse mode
- M1, ..., M3: One-touch memory
- F1, ..., F4: Flash keys, F1 = $600 \mathrm{mS}, \mathrm{F} 2=300 \mathrm{mS}, \mathrm{F} 3=73 \mathrm{mS}, \mathrm{F} 4=100 \mathrm{mS}$

Notes:

D1, ... Dn, D1', ..., Dn': 0, ..., 9, */T, \#
Mn: M1 , ..., M3; Ln: 0, .., 9; Fn: F1, ..., F4

W91350N SERIES

Normal Dialing

1. D1, D2, ..., Dn will be dialed out.
2. Dialing length is unlimited, but redial is inhibited if length exceeds 32 digits in normal dialing.

Redialing

1. The redial memory content will be dialed out.
2. The R/P key can execute the redial function only as the first key-in after off-hook; otherwise, it executes pause function.
3. If redialing length exceeds 32 digits, the redialing function will be inhibited.

Number Store

$$
\begin{array}{|l|}
\hline \mathrm{Mn} \\
\hline
\end{array} \text { (or } \mathrm{Ln} \text {) }
$$

1. If the sequence of the dialed digits D1, D2, ..., Dn has not S will be ignored. finished, \square
2. D1, D2, ..., Dn will be dialed out and stored in memory location.

OFF HOOK	, (or	ON HOOK	\&	Fl),	S	D1	D2	Dn	S

Mn (or Ln)
3. D1, D2, ..., Dn will be stored in memory location but will not be dialed out.
4. \square */T keys can be stored as a digit in memory.

In store mode, R / P is the pause function key.
5. The store mode is released after the store function is executed or when the state of the hook switch changes.

Repertory Dialing

OFF HOOK	, (or	ON HOOK	\&),	M			
OFF HOOK	, (or	ON HOOK	\&	HFI ${ }^{\circ}-$),	A			-n

Access Pause

W91350N SERIES

1. The pause function can be stored as a digit in memory.
2. The pause function is executed in normal dialing, redial dialing, or memory dialing.
3. A detailed timing diagram for the pause function is shown in Figure 4.

Pulse-to-tone (*/T)

1. If the mode switch is set to pulse mode, then the output signal will be:

D1, D2, ..., Dn, Pause (3.6 sec.), D1', D2', ..., Dn'
(Pulse)
(Tone)
The pause time will be added in all versions except for the W91354AN.
2. If the mode switch is set to tone mode, then the output signal will be:

D1, D2, ..., Dn, *, D1', D2', ..., Dn' (Tone)
(Tone)
3. The dialer remains in tone mode when the digits have been dialed out and can be reset to pulse mode only by going on-hook.
4. The pulse-to-tone function timing diagram is shown in Figure 5(a, b).

Flash

OFF HOOK	, (or	ON HOOK	\&	HFI),	Fn

1. $\mathrm{Fn}=\mathrm{F} 1, \ldots$, F 4
2. The dialer will execute a flash break time of 600 mS (F1), 300 mS (F2), 73 mS (F3), or 100 mS (F4).

In each case the flash pause time is 1.0 sec . before the next digit is dialed out.
3. Flash key cannot be stored as a digit in memory, and it has first priority among keyboard functions.
4. The system will return to the initial state after the flash pause time is finished.
5. The flash function timing diagram is shown in Figure 6.

Save

Cascaded Dialing

1. Normal Dialing + Repertory Dialing + Normal Dialing
2. Repertory Dialing + Normal Dialing + Repertory Dialing

W91350N SERIES

3.

Redialing + Normal Dialing + Repertory Dialing

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT
DC Supply Voltage	VDD-Vss	-0.3 to +7.0	V
Input/Output Voltage	VIL	Vss -0.3	V
	VIH	VDD +0.3	V
	VoL	Vss -0.3	V
	VoH	VDD +0.3	V
Power Dissipation	PD	120	mW
Operation Temperature	ToPR	-20 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature	TsTG	-55 to +150	${ }^{\circ} \mathrm{C}$

Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliability of the device.

DC CHARACTERISTICS

(VDD-VSS $=2.5 \mathrm{~V}$, Fosc. $=3.579545 \mathrm{MHz}, \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, All outputs unloaded $)$

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Operating Voltage	VDD	-	2.0	-	5.5	V
Operating Current	Iop	Tone, Unloaded	-	0.4	0.6	mA
		Pulse, Unloaded	-	0.2	0.4	
Standby Current	IsB	$\overline{\text { HKS }}=$ Vss, No load \& No key entry	-	-	15	$\mu \mathrm{A}$
Memory Retention Current	IMR	$\begin{aligned} & \overline{\mathrm{HKS}}=\mathrm{VDD}, \mathrm{VDD}= \\ & 1.0 \mathrm{~V} \end{aligned}$	-	-	0.2	$\mu \mathrm{A}$
DTMF Output Voltage	Vто	Row group, $\mathrm{RL}=5 \mathrm{~K} \Omega$	130	150	170	$\underset{\mathrm{s}}{\mathrm{mV} \mathrm{rm}}$
Pre-emphasis	-	Col/Row, $\mathrm{VDD}=2.0 \text { to } 5.5 \mathrm{~V}$	1	2	3	dB
DTMF Distortion	THD	$\begin{aligned} & \mathrm{RL}=5 \mathrm{~K} \Omega, \\ & \mathrm{VDD}=2.0 \text { to } 5.5 \mathrm{~V} \end{aligned}$	-	-30	-23	dB
DTMF Output DC Level	Vtdc	$\begin{aligned} & \mathrm{RL}=5 \mathrm{~K} \Omega, \\ & \mathrm{VDD}=2.0 \text { to } 5.5 \mathrm{~V} \end{aligned}$	1.0	-	3.0	V
DTMF Output Sink Current	ITL	V TO $=0.5 \mathrm{~V}$	0.2	-	-	mA
$\overline{\mathrm{DP}}$ Output Sink Current	IPL	$\mathrm{VPO}=0.5 \mathrm{~V}$	0.5	-	-	mA

W91350N SERIES

T/P MUTE Output Sink Current	IML	Vmo $=0.5 \mathrm{~V}$	0.5	-	-	mA
H/P Mute Output	IHPH	$\mathrm{VHPH}=2.0 \mathrm{~V}$	0.5	-	-	mA
Drive/Sink Current	IHPL	$\mathrm{VHPL}=0.5 \mathrm{~V}$	0.5	-	-	mA

DC Characteristics, continued

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
HFO Drive/Sink Current	IHFH	VHFH $=2.0 \mathrm{~V}$	0.5	-	-	mA
	IHFL	VHFL $=0.5 \mathrm{~V}$	0.5	-	-	mA
Keypad Input Drive Current	IKD	VI $=0.0 \mathrm{~V}$	30	-	-	$\mu \mathrm{A}$
Keypad Input Sink Current	IKS	VI $=2.5 \mathrm{~V}$	200	400	-	$\mu \mathrm{A}$
$\overline{\text { HKS I/P Pull-high Resistor }}$	RHK	-	-	300	-	$\mathrm{K} \Omega$
Keypad Resistance	RK	-	-	-	5.0	$\mathrm{~K} \Omega$

AC CHARACTERISTICS

(Vdd-Vss $=2.5 \mathrm{~V}$, Fosc. $=3.579545 \mathrm{MHz}, \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, All outputs unloaded)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Key-in Debounce	TKID	-	-	20	-	mS
Key Release Debounce	TKRD	-	-	20	-	mS
On-hook Debounce	TOHD	-	-	150	-	mS
Pre-digit Pause ${ }^{1}$	TPDP1	Mode $=$ VdD	-	40	-	mS
	10 ppS	Mode = Floating	-	33.3	-	
Pre-digit Pause ${ }^{2}$	TPDP2	Mode = Vdd	-	20	-	mS
	20 ppS	Mode = Floating	-	16.7	-	
Interdigit Pause (Auto Dialing)	TIDP	10 ppS	-	800	-	mS
		20 ppS	-	500	-	
Make/Break Ratio	M/B	Mode $=$ Vdd	-	40:60	-	\%
		Mode = Floating	-	33.3:66.7	-	
Tone Output Duration	TTD	Auto dialing	-	93	-	mS
		W91354AN Only	-	87	-	
Intertone Pause	TITP	Auto dialing	-	93	-	mS
		W91354AN Only	-	87	-	
Flash Break Time	TFB	F1	-	600	-	mS
		F2	-	300	-	
		F3		73		
		F4	-	100	-	

W91350N SERIES

Flash Pause Time	TFP	F1, F2, F3, F4	-	1.0	-	S
Pause Time	TP	R/P	-	3.6	-	S

Notes:

1. Crystal parameters suggested for proper operation are $\mathrm{Rs}<100$ ohms, $\mathrm{Lm}=96 \mathrm{mH}, \mathrm{Cm}=0.02 \mathrm{pF}, \mathrm{Cn}=5 \mathrm{pF}, \mathrm{Cl}=18 \mathrm{pF}$, Fosc. $=3.579545 \mathrm{MHz} \pm 0.02 \%$.
2. Crystal oscillator accuracy directly affects these times.

W91350N SERIES

TIMING WAVEFORMS

Figure 1(a). Normal Dialing Timing Diagram

Figure 1(b) Pulse Mode Auto Dialing Timing Diagram

W91350N SERIES

Timing Waveforms, continued

Figure 1(c) Pulse Mode Auto Dialing Timing Diagram

Figure 2(a) Tone Mode Normal Dialing Timing Diagram

Timing Waveforms, continued

Figure 2(b) Tone Mode Auto Dialing Timing Diagram

W91350N SERIES

Timing Waveforms, continued

Figure 3. Handfree Function Timing Diagram

Figure 4. Pause Function Timing Diagram

Figure 5(a). Pulse-to-tone Timing Diagram (All Versions Except W91354AN)

Figure 5(b). Pulse-to-tone Timing Diagram (W91354AN Only)

W91350N SERIES

Timing Waveforms, continued

Figure 6. Flash Timing Diagram

