TR
] f

User’'s Manual, V1.0, June 2007

XC2000 Derivatives"

16/32-Bit Single-Chip Micro
32-Bit Performance

"~ Volume 1 (of 2): SystemuU

iy

Microcontrollers

L5 ,:.';-:_u-" .
-L‘ L EE
a

€

(infineon

Never stop thinking

Edition 2007-06

Published by
Infineon Technologies AG
81726 Munich, Germany

© 2007 Infineon Technologies AG
All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights
of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain
and/or protect human life. If they fall, it is reasonable to assume that the health of the user or other persons may
be endangered.

User’'s Manual, V1.0, June 2007

XC2000 Derivatives

16/32-Bit Single-Chip Microe.%troller with
32-Bit Performance \

Volume 1 (of 2): Systen?bulnits

Microcontrollers

afineon

Never stop thinking

.. XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)

Preliminary

XC2xXX

Revision History: V1.0, 2007-06

Previous Version(s):
V0.1, 2007-03, Draft version

Page Subjects (major changes since last revision)
1-2 More derivatives added to list

Description of SSC and CAN bootstrap loaders added
9-1ff EBC chapter corrected

mcdocu.co

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:

mments@infineon.com

User’s Manual

V1.0, 2007-06

.. XC2000 Derivatives
@'neﬂ System Units (Vol. 1 of 2)

Preliminary Summary Of Chapters

Summary Of Chapters

This User’s Manual consists of two Volumes, “System Units” and “Peripheral Units”. For
a quick overview this table of chapters summarizes both volumes, so you immediately
can find the reference to the desired section in the corresponding document ([1] or [2]).

© 00 N oo g B~ W N PP

I N N N i e I i o i =
© © ® N o O »A W N kB O

Summary Of Chapters e 0-1[1]
Table Of Contents e 0-3[1]
INtroduction 1-1[1]
Architectural Overview i 2-1[1]
Memory Organization 3-1[1]
Central Processing Unit (CPU) 4-1[1]
Interrupt and Trap Functions 5-1[1]
System Control Unit (SCU) 6-1[1]
Parallel Ports 7-1[1]
Dedicated Pins 8-1[1]
The External Bus Controller EBC 9-1[1]
Startup Configuration and Bootstrap Loading 10-1 [1]
Debug System 11-1[1]
Instruction Set Summary 12-1[1]
Device Specification 13-1[1]
The General Purpose Timer Units 14-1 [2]
Real Time Clock 15-1[2]
Analog to Digital Converter 16-1 [2]
Capture/Compare Unit 2 i 17-1[2]
Capture/Compare Unit 6 (CCUB), 18-1[2]
Universal Serial Interface Channel 19-1 [2]
Controller Area Network (MultiCAN) Controller 20-1 [2]
Keyword Index e 21-1[2]
Register Index i 22-5[2]

User’s Manual L-1 V1.0, 2007-06

@ . .

: XC2000 Derivatives
Infineon :
v System Units (Vol. 1 of 2)

Preliminary Summary Of Chapters

User’s Manual L-2 V1.0, 2007-06

S XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)
Preliminary Table Of Contents

Table Of Contents

This User’s Manual consists of two Volumes, “System Units” and “Peripheral Units”. For
your convenience this table of contents (and also the keyword and register index) lists
both volumes, so you can immediately find the reference to the desired section in the
corresponding document ([1] or [2]).

Summary Of Chapters e 0-1[1]

Table Of Contents e 0-3[1]
1 INtroducCtion 1-1[1]
1.1 Members of the 16-bit Microcontroller Family 1-3[1]
1.2 Summary of Basic Features 1-5[1]
1.3 Abbreviations 1-9 1]
14 Naming Conventionst 1-10 [1]
2 Architectural Overview i 2-1[1]
2.1 Basic CPU Concepts and Optimizations 2-2 [1]
2.1.1 High Instruction Bandwidth/Fast Execution 2-4 1]
2.1.2 Powerful Execution Units i 2-5[1]
2.1.3 High Performance Branch-, Call-, and Loop-Processing 2-6 [1]
214 Consistent and Optimized Instruction Formats 2-7[1]
2.1.5 Programmable Multiple Priority Interrupt System 2-8[1]
2.1.6 Interfaces to System Resourcesun... 2-9[1]
2.2 On-Chip System ReSOUICeS ittt 2-10 [1]
2.3 On-Chip Peripheral Blocks 2-15[1]
2.4 Clock Generation e 2-32 [1]
2.5 Power Managementttt 2-33 [1]
2.6 On-Chip Debug Support (OCDS) ... 2-34 [1]
3 Memory Organization, 3-1[1]
3.1 Address Mapping . . .o oot 3-3[1]
3.2 Special Function Register Areascuiiiiinnaa... 3-4[1]
3.3 Data Memory Areasot 3-9[1]
3.4 Program Memory Areascovii i 3-11[1]
34.1 Program/Data SRAM (PSRAM) i 3-12 [1]
3.4.2 Non-Volatile Program Memory (Flash) 3-13[1]
3.5 System Stack 3-14 [1]
3.6 IO ArasS 3-15[1]
3.7 External Memory Space 3-16 [1]
3.8 Crossing Memory Boundaries i 3-17 [1]
3.9 Embedded FlashMemory 3-18 [1]
3.9.1 Definitions 3-18 [1]

User’s Manual L-3 V1.0, 2007-06

.. XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)

Preliminary Table Of Contents
3.9.2 Operating Modes 3-20 [1]
3.9.3 Operations 3-22[1]
3.9.4 Details of Command Sequences 3-25[1]
3.9.5 Datalntegrity i 3-35[1]
3.9.6 Protection Handling Details 3-38 [1]
3.9.7 Protection Handling Examples 3-45 [1]
3.9.8 EEPROM Emulation 3-47 [1]
3.9.9 Interrupt Generation 3-49 [1]
3.10 On-Chip Program Memory Control 3-50 [1]
3.10.1 OVBIVIBW . . e 3-50 [1]
3.10.2 RegisterInterface 3-52 [1]
3.10.3 Startup, Shutdown 3-67 [1]
3.10.4 Error Reporting Summary ..., 3-69 [1]
3.11 Data Retention MemMoOriesoinnnnnnnnnnn.. 3-70[1]
3.11.1 Stand-By RAM ACCESSES it i ittt e 3-71[1]
3.11.2 Stand-By RAM ReqgISters 3-72[1]
3.11.3 Marker Memory (MKMEM) 3-76 [1]
3.12 Memory Parity Error Handling 3-77[1]
3.12.1 Parity Control Registers i 3-78 [1]
4 Central Processing Unit (CPU) 4-1[1]
4.1 Componentsofthe CPU i, 4-4 (1]
4.2 Instruction Fetch and Program Flow Control 4-5 [1]
4.2.1 Branch Detection and Branch PredictionRules 4-7 1]
4.2.2 Correctly Predicted Instruction Flow 4-7 1]
4.2.3 Incorrectly Predicted Instruction Flow 4-9 [1]
4.3 Instruction Processing Pipeline 4-11 [1]
4.3.1 Pipeline Conflicts Using General Purpose Registers 4-13 [1]
4.3.2 Pipeline Conflicts Using Indirect Addressing Modes 4-15 [1]
4.3.3 Pipeline Conflicts Due to Memory Bandwidth 4-17 [1]
4.3.4 Pipeline Conflicts Caused by CPU-SFR Updates 4-20 [1]
4.4 CPU Configuration Registers i 4-26 [1]
4.5 Use of General Purpose Registers, 4-29 [1]
45.1 GPR AddressingModes 4-31 [1]
45.2 Context Switching 4-33 [1]
4.6 Code Adressingttt e 4-37 [1]
4.7 Data AddressSingo oot 4-39 [1]
4.7.1 Short AddressingModes i 4-39 [1]
4.7.2 Long AddressingModes i 4-41 [1]
4.7.3 Indirect Addressing Modes 4-44 1]
4.7.4 DSP AddressingModes 4-46 [1]
4.7.5 The System Stack 4-52 1]
4.8 Standard Data Processing 4-56 [1]

User’s Manual L-4 V1.0, 2007-06

.. XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)

Preliminary Table Of Contents
4.8.1 16-bit Adder/Subtracter, Barrel Shifter, and 16-bit Logic Unit 4-60 [1]
4.8.2 Bit Manipulation Unit 4-60 [1]
4.8.3 Multiply and Divide Unit 4-62 [1]
4.9 DSP Data Processing (MAC Unit) 4-64 [1]
49.1 MAC Unit Control 4-65 [1]
4.9.2 Representation of Numbers and Rounding 4-65 [1]
4.9.3 The 16-bit by 16-bit Signed/Unsigned Multiplier and Scaler 4-66 [1]
49.4 Concatenation Unit 4-66 [1]
4.9.5 One-bit Scaler 4-66 [1]
4.9.6 The 40-bit Adder/Subtracter 4-66 [1]
4.9.7 The Data Limiter 4-67 [1]
4.9.8 The Accumulator Shifter 4-67 [1]
4.9.9 The 40-bit Signed Accumulator Register 4-68 [1]
4.9.10 The MAC Unit Status Word MSW 4-70 [1]
49.11 The Repeat Counter MRW i 4-72 [1]
4.10 Constant Registers 4-74 (1]
5 Interrupt and Trap Functions 5-1[1]
5.1 Interrupt System Structure 5-2 [1]
5.2 Interrupt Arbitration and Control 5-4[1]
5.3 Interrupt Vector Table 5-10[1]
54 Operation of the Peripheral Event Controller Channels 5-19 [1]
54.1 The PECC Registers 5-19 [1]
5.4.2 The PEC Source and Destination Pointers 5-23 [1]
5.4.3 PEC Transfer Control i, 5-25[1]
544 Channel Link Mode for Data Chaining 5-27 [1]
545 PEC Interrupt Control 5-28 [1]
5.5 Prioritization of Interrupt and PEC Service Requests 5-30 [1]
5.6 Context Switchingand Saving Status 5-32 [1]
5.7 Interrupt Node Sharing 5-35[1]
5.8 External Interrupts 5-36 [1]
5.9 OCDS REQUESES . ..ottt e e e 5-38 [1]
5.10 Service RequestLatency i 5-39 [1]
5.11 Trap FUNCLIONS 5-41[1]
6 System Control Unit (SCU) i, 6-1[1]
6.1 Clock Generation Unit 6-2 [1]
6.1.1 Wake-Up Clock Circuit (OSC_WU), 6-3 [1]
6.1.2 High Precision Oscillator Circuit (OSC HP) 6-3 [1]
6.1.3 Phase-Locked Loop (PLL) Module 6-5 [1]
6.1.4 Clock Control Unit i 6-13 [1]
6.1.5 External Clock Output 6-15 [1]
6.1.6 CGU REQIStEIS e e e 6-18 [1]
6.2 Reset Operation i e 6-33 [1]

User’s Manual L-5 V1.0, 2007-06

.. XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)

Preliminary Table Of Contents
6.2.1 Reset Architecture i 6-33 [1]
6.2.2 General Reset Operation 6-33 [1]
6.2.3 Coupling of Reset Types, 6-35 [1]
6.2.4 Debug Reset Assertion 6-36 [1]
6.2.5 Examplel: 6-36 [1]
6.2.6 ExampleZ: 6-36 [1]
6.2.7 Exampled: 6-36 [1]
6.2.8 Reset Request Trigger Sourcescouuuuuunnn.. 6-36 [1]
6.2.9 Module Reset Behavior i 6-40 [1]
6.2.10 Reset Controller Registers 6-41 [1]
6.3 External Service Request (ESR)Pins 6-52 [1]
6.3.1 General Operation i, 6-52 [1]
6.3.2 ESR Control Registers 6-58 [1]
6.3.3 ESR Data Register 6-63 [1]
6.4 External Request Unit (ERU) 6-64 [1]
6.4.1 Introduction 6-64 [1]
6.4.2 ERUPINConnectionsiiiiiiinnn... 6-66 [1]
6.4.3 External Request Select Unit (ERSx; x=0..3) 6-72 [1]
6.4.4 Event Trigger Logic (ETLX; X =0..3) 6-74 [1]
6.4.5 Connecting Matrix i 6-76 [1]
6.4.6 Output Gating Unit (OGUy; y =0..3) 6-77 [1]
6.4.7 ERU Output Connections, 6-81 [1]
6.4.8 ERU REQISterSo 6-83 [1]
6.5 Power Supplyand Control 6-90 [1]
6.5.1 Supply Watchdog (SWD) 6-91 [1]
6.5.2 Monitoring the Voltage Level of a Core Domain 6-97 [1]
6.5.3 Controlling the Voltage Level of a Core Domain 6-115 [1]
6.5.4 Handling the Power System 6-126 [1]
6.5.5 Power State Controller (PSC) 6-128 [1]
6.5.6 Operating a Power Transfer 6-130 [1]
6.5.7 Power Control Registers 6-134 [1]
6.6 Global State Controller (GSC) 6-156 [1]
6.6.1 GSC Control Flow 6-156 [1]
6.6.2 GSC REegISterS 6-160 [1]
6.7 Temperature Compensation Unit 6-165 [1]
6.7.1 Temperature Compensation Registers 6-166 [1]
6.8 Watchdog Timer e 6-168 [1]
6.8.1 Introduction 6-168 [1]
6.8.2 OVBIVIBW . .ttt 6-168 [1]
6.8.3 Functional Description 6-169 [1]
6.8.4 WDT Kernel Registers 6-173 [1]
6.9 Wake-up Timer (WUT) e 6-176 [1]
6.9.1 Wake-Up Timer Operation 6-177 [1]

User’s Manual L-6 V1.0, 2007-06

.. XC2000 Derivatives
@'neﬂ System Units (Vol. 1 of 2)

Preliminary Table Of Contents
6.9.2 WUT ReQISterS . ..ot 6-178 [1]
6.10 Register Control 6-181 [1]
6.10.1 Register Access Control 6-181 [1]
6.10.2 Register Protection Registers 6-183 [1]
6.10.3 Miscellaneous System Control Registers 6-185 [1]
6.11 SCU Interruptand Trap Handling 6-186 [1]
6.11.1 SCU Interrupt Handling 6-187 [1]
6.11.2 SCU Interrupt Control Registers 6-189 [1]
6.11.3 SCU Trap Generationiiiiiiinn.. 6-200 [1]
6.11.4 SCU Trap Control Registers 6-202 [1]
6.11.5 DPM_M Interrupt and Trap Support 6-210 [1]
6.11.6 DPM_M Interrupt and Trap Registers 6-211 [1]
6.11.7 Alternate Interrupt Assignment Register 6-216 [1]
6.12 Identification Block 6-218 [1]
6.13 SCU Register AddresSesot 6-220 [1]
7 Parallel POrts 7-1[1]
7.1 General Description 7-2 [1]
7.1.1 Basic Port Operation i 7-2 [1]
7.1.2 Input Stage Control 7-5[1]
7.1.3 Output Driver Control 7-5[1]
7.2 Pin DesCription 7-6 [1]
7.2.1 Description Scheme for the Port 10 Functions 7-6 [1]
7.3 Port DesCription 7-7[1]
7.3.1 Port Register Description 7-7[1]
7.3.2 POrt O .. 7-18 [1]
7.3.3 POt L . 7-22 [1]
7.3.4 POt 2 7-26 [1]
7.3.5 POt 3 L 7-33 [1]
7.3.6 POrt 4 . 7-37 [1]
7.3.7 0 £ 8 7-41 [1]
7.3.8 POrt 6 ... 7-43 [1]
7.3.9 POt 7 . 7-46 [1]
7.3.10 POt 8 . . 7-49 [1]
7.3.11 POrt O .. 7-52 [1]
7.3.12 POrt 10 7-55 [1]
7.3.13 Port 11 ... 7-62 [1]
7.3.14 POrt A5 ... 7-65 [1]
8 Dedicated PinS 8-1[1]
9 The External Bus Controller EBC 9-1[1]
9.1 External Bus Signals 9-3[1]
9.2 Timing Principles 9-4[1]

User’s Manual L-7 V1.0, 2007-06

.. XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)

Preliminary Table Of Contents
9.2.1 Basic Bus Cycle Protocols 9-4 [1]
9.2.2 BusCycle Phases 9-7 [1]
9.2.3 Bus Cycle Examples: Fastest AccessCycles 9-9[1]
9.3 Functional Description 9-11[1]
9.3.1 Configuration Register Overview 9-11[1]
9.3.2 The EBC Mode Register O i 9-13[1]
9.3.3 The EBC Mode Register 1 9-15[1]
9.34 The Timing Configuration Registers TCONCSX 9-16 [1]
9.35 The Function Configuration Registers FCONCSX 9-19 [1]
9.3.6 The Address Window Selection Registers ADDRSELX 9-22 [1]
9.3.7 Ready Controlled BusCycles 9-25 [1]
9.3.8 Access Control to LXBus Modules 9-27 [1]
9.3.9 External Bus Arbitration 9-28 [1]
9.3.10 Shutdown Control 9-32[1]
9.4 LXBus Access Control and Signal Generation 9-33 [1]
9.5 EBC RegisterTable 9-33[1]
10 Startup Configuration and Bootstrap Loading 10-1 [1]
10.1 Start-Up Mode Selection i 10-1[1]
10.2 Internal Start 10-2 [1]
10.3 External Start 10-2 [1]
10.4 Bootstrap Loading 10-4 [1]
104.1 General Functionality 10-4 [1]
10.4.2 Standard UART Bootstrap Loader 10-6 [1]
10.4.3 Synchronous Serial Channel Bootstrap Loader 10-11 [1]
10.4.4 CAN Bootstrap Loader i 10-14 [1]
10.4.5 Summary of Bootstrap Loader Modes 10-17 [1]
11 Debug System 11-1[1]
111 Debug Interface 11-2 [1]
11.1.1 Routingof Debug Signals 11-3[1]
11.2 OCDS Module 11-5[1]
11.2.1 Debug Events 11-7 [1]
11.2.2 Debug ACtions 11-8[1]
11.3 Cerberus 11-9 [1]
11.3.1 Functional Overview 11-9 [1]
12 Instruction Set Summary 12-1 1]
13 Device Specification i 13-1[1]
14 The General Purpose Timer Units 14-1 [2]
14.1 Timer Block GPTL 14-2 [2]
1411 GPT1 Core Timer T3 Control 14-4 [2]
14.1.2 GPT1 Core Timer T3 OperatingModes 14-8 [2]

User’s Manual L-8 V1.0, 2007-06

.. XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)

Preliminary Table Of Contents
14.1.3 GPT1 Auxiliary Timers T2/T4 Control 14-15 [2]
1414 GPT1 Auxiliary Timers T2/T4 Operating Modes 14-18 [2]
14.1.5 GPT1 Clock Signal Control 14-27 [2]
14.1.6 GPT1TimerRegisters 14-30 [2]
14.1.7 Interrupt Control for GPTL Timers 14-31 [2]
14.2 Timer Block GPT2 14-32 [2]
14.2.1 GPT2 Core Timer T6 Control 14-34 [2]
14.2.2 GPT2 Core Timer T6 OperatingModes 14-38 [2]
14.2.3 GPT2 Auxiliary Timer T5 Control 14-41 [2]
14.2.4 GPT2 Auxiliary Timer T5 Operating Modes 14-44 [2]
14.2.5 GPT2 Register CAPREL OperatingModes 14-48 [2]
14.2.6 GPT2 Clock Signal Control 14-53 [2]
14.2.7 GPT2 TimerRegisters 14-56 [2]
14.2.8 Interrupt Control for GPT2 Timersand CAPREL 14-57 [2]
14.2.9 KSCCFG Register s 14-58 [2]
14.3 Interfaces of the GPT Module 14-60 [2]
15 Real Time Clock 15-1[2]
151 Definingthe RTC TimeBasecoiiiiiiiiinn... 15-2 [2]
15.2 RTCRunControl e 15-5[2]
15.3 RTC Operating Modes e 15-7 [2]
15.4 48-bit Timer Operation i 15-11 [2]
15.5 System Clock Operation 15-11 [2]
15.6 Cyclic Interrupt Generation 15-12 [2]
15.7 RTC Interrupt Generationiiiiiennnnn.. 15-13[2]
15.8 KSCCFG RegiSter 15-15 [2]
16 Analog to Digital Converter 16-1 [2]
16.1 INtroduction 16-1 [2]
16.1.1 ADC Block Diagram 16-2 [2]
16.1.2 Feature Set 16-3 [2]
16.1.3 Abbreviations 16-4 [2]
16.1.4 ADC Kernel Overview 16-5 [2]
16.1.5 Conversion RequestUnit 16-7 [2]
16.1.6 Conversion ResultUnit 16-9 [2]
16.1.7 Interrupt Structure 16-10 [2]
16.1.8 Electrical Models 16-11 [2]
16.1.9 Transfer Characteristics and Error Definitions 16-14 [2]
16.2 Operatingthe ADC e 16-15 [2]
16.2.1 Register Overview 16-16 [2]
16.2.2 Mode Control 16-20 [2]
16.2.3 Module Activation and Power Saving Modes 16-22 [2]
16.2.4 Clocking Scheme 16-23 [2]
16.2.5 General ADC RegiISters 16-24 [2]

User’s Manual L-9 V1.0, 2007-06

.. XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)

Preliminary Table Of Contents
16.2.6 Request Source Arbiter 16-33 [2]
16.2.7 Arbiter Registers 16-37 [2]
16.2.8 Scan Request Source Handling 16-39 [2]
16.2.9 Scan Request Source Registers 16-43 [2]
16.2.10 Sequential Request Source Handling 16-47 [2]
16.2.11 Sequential Source Registers 16-52 [2]
16.2.12 Channel-Related Functions 16-63 [2]
16.2.13 Channel-Related Registers 16-68 [2]
16.2.14 Conversion ResultHandling 16-78 [2]
16.2.15 Conversion Result-Related Registers 16-86 [2]
16.2.16 External Multiplexer Control 16-96 [2]
16.2.17 Synchronized Conversions for Parallel Sampling 16-98 [2]
16.2.18 Additional Feature Registers 16-102 [2]
16.3 Implementation 16-105 [2]
16.3.1 AddressS Mapo 16-105 [2]
16.3.2 Interrupt Control Registers 16-105 [2]
16.3.3 Analog Connections i 16-106 [2]
16.3.4 Digital Connections i 16-109 [2]
17 Capture/Compare Unit 2 i 17-1[2]
17.1 The CAPCOM2Z TIMEISt 17-4 2]
17.2 CAPCOM2 Timer Interruptsot e 17-10 [2]
17.3 Capture/Compare Channels 17-11 (2]
17.3.1 Capture/Compare Registers for the CAPCOM2 (CC31 ... CC16) 17-11 [2]
17.4 Capture Mode Operation 17-14 [2]
17.5 Compare Mode Operation, 17-15[2]
17.5.1 Compare Mode O ...t e 17-16 [2]
17.5.2 Compare Mode 1 e 17-16 [2]
17.5.3 Compare Mode 2 e 17-19 [2]
1754 Compare Mode 3 17-19 [2]
17.5.5 Double-Register Compare Mode 17-24 2]
17.6 Compare Output Signal Generation 17-27 [2]
17.7 Single Event Operation 17-29 [2]
17.8 Staggered and Non-Staggered Operation 17-31 [2]
17.9 CAPCOM2Z INnterruptso e 17-36 [2]
17.10 External Input Signal Requirements 17-38 [2]
17.10.1 KSCCFG Register s 17-39 [2]
17.11 Interfaces of the CAPCOM Units 17-41 [2]
18 Capture/Compare Unit 6 (CCUB), 18-1[2]
18.1 INtroduction 18-1[2]
18.1.1 Feature Set Overview 18-2 [2]
18.1.2 Block Diagram 18-3 [2]
18.1.3 Register OVerview 18-4 2]

User’s Manual L-10 V1.0, 2007-06

.. XC2000 Derivatives
@'neﬂ System Units (Vol. 1 of 2)

Preliminary Table Of Contents
18.2 Operating Timer T12 e 18-8 [2]
18.2.1 TLI2 OVEIVIEW . . o o ittt e e e e e e 18-9 [2]
18.2.2 T12 CountingScheme i, 18-11 [2]
18.2.3 T12 Compare Mode 18-15 [2]
18.2.4 Compare Mode OutputPath 18-22 [2]
18.2.5 T12 Capture MOdEeSt e 18-27 [2]
18.2.6 T12 Shadow Register Transfer 18-31 [2]
18.2.7 Timer T12 Operating Mode Selection 18-32 [2]
18.2.8 T12related Reqgisters i 18-33 [2]
18.2.9 Capture/Compare Control Registers 18-38 [2]
18.3 Operating Timer T13 e 18-50 [2]
18.3.1 TLI3OVEIVIEW . . oot e e 18-50 [2]
18.3.2 T13 CountingScheme 18-53 [2]
18.3.3 T13Compare Modet 18-58 [2]
18.3.4 Compare Mode OutputPath 18-60 [2]
18.3.5 T13 Shadow Register Transfer 18-61 [2]
18.3.6 T13related Reqgisters 18-63 [2]
18.4 TrapHandling 18-66 [2]
18.5 Multi-Channel Mode 18-68 [2]
18.6 Hall Sensor Mode 18-70 [2]
18.6.1 Hall Pattern Evaluation 18-71[2]
18.6.2 Hall Pattern Compare LogiC 18-73 [2]
18.6.3 HallMode Flags 18-74 [2]
18.6.4 Hall Mode for Brushless DC-Motor Control 18-76 [2]
18.7 Modulation Control Registers 18-78 [2]
18.7.1 Modulation Control 18-78 [2]
18.7.2 Trap Control Register i 18-80 [2]
18.7.3 Passive State Level Register 18-83 [2]
18.7.4 Multi-Channel Mode Registers 18-84 [2]
18.8 Interrupt Handling 18-89 [2]
18.8.1 Interrupt Structure 18-89 [2]
18.8.2 Interrupt Registers e 18-91 [2]
18.9 General Module Operation 18-103 [2]
18.9.1 Mode Control 18-103 [2]
18.9.2 Input Selection 18-106 [2]
18.9.3 General Registers 18-107 [2]
18.10 Implementation 18-115 [2]
18.10.1 Address Mapt 18-115[2]
18.10.2 Interrupt Control Registers 18-116 [2]
18.10.3 Synchronous Start Feature 18-117 [2]
18.10.4 Digital Connections i 18-118 [2]
19 Universal Serial Interface Channel 19-1 [2]

User’s Manual L-11 V1.0, 2007-06

.. XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)

Preliminary Table Of Contents
19.1 INtroduction 19-1 [2]
19.1.1 Feature Set Overview 19-2 [2]
19.1.2 Channel Structure 19-5[2]
19.1.3 Input Stages 19-6 [2]
19.1.4 Output Signals 19-7 [2]
19.1.5 Baud Rate Generatorttt 19-8 [2]
19.1.6 Channel Events and Interrupts 19-9 [2]
19.1.7 Data Shiftngand Handling 19-9 [2]
19.2 Operatingthe USIC e 19-13 [2]
19.2.1 Register OVerview e 19-13[2]
19.2.2 Operating the USIC Communication Channel 19-17 [2]
19.2.3 Channel Control and Configuration Registers 19-28 [2]
19.2.4 Protocol Related Registers 19-37 [2]
19.25 Operating the Input Stages 19-40 [2]
19.2.6 Input Stage Registers i 19-42 [2]
19.2.7 Operating the Baud Rate Generator 19-44 [2]
19.2.8 Baud Rate Generator Registers 19-49 [2]
19.2.9 Operating the Transmit DataPath 19-54 [2]
19.2.10 Operating the Receive DataPath 19-58 [2]
19.2.11 Transfer Control and Status Registers 19-60 [2]
19.2.12 Data Buffer Registers 19-72 2]
19.2.13 Operating the FIFO DataBuffer 19-82 [2]
19.2.14 FIFO Buffer and Bypass Registers 19-91 [2]
19.3 Asynchronous Serial Channel ASC=UART) 19-112 [2]
19.3.1 Signal Description 19-112 [2]
19.3.2 Frame Format 19-113 [2]
19.3.3 Operatingthe ASC i 19-116 [2]
19.34 ASC Protocol Registers i 19-124 [2]
19.3.5 Hardware LIN Support 19-129 [2]
19.4 Synchronous Serial Channel (SSC) 19-130 [2]
194.1 Signal Description 19-130 [2]
19.4.2 Operatingthe SSC 19-138 [2]
19.4.3 Operating the SSC in MasterMode 19-141 [2]
19.4.4 Operating the SSCin SlaveMode 19-148 [2]
19.45 SSC Protocol Registers 19-150 [2]
19.4.6 SSC Timing Considerationst .. 19-154 [2]
19.5 Inter-IC Bus Protocol (IIC) 19-158 [2]
1951 Introduction 19-158 [2]
19.5.2 Operatingthe lIC 19-162 [2]
19.5.3 Symbol Timing 19-168 [2]
1954 DataFlowHandling 19-171 [2]
19.5.5 [IC Protocol Registers i 19-176 [2]
19.6 IS Protocol 19-181 [2]

User’s Manual L-12 V1.0, 2007-06

.. XC2000 Derivatives
@'neﬂ System Units (Vol. 1 of 2)

Preliminary Table Of Contents
19.6.1 Introduction 19-181 [2]
19.6.2 Operatingthe lIS 19-185 [2]
19.6.3 Operating the lISin MasterMode 19-190 [2]
19.6.4 Operatingthe lISin Slave Mode 19-194 [2]
19.6.5 [IS Protocol Registers 19-195 [2]
19.7 USIC Implementation in XC2000 19-199 [2]
19.7.1 Implementation Overview 19-199 [2]
19.7.2 Channel Features 19-200 [2]
19.7.3 Address Mapot 19-200 [2]
19.7.4 Interrupt Control Registers 19-201 [2]
19.7.5 Input/Output Connectionsy 19-203 [2]
20 Controller Area Network (MultiCAN) Controller 20-1 [2]
20.1 MultiCAN Short Description 20-1 [2]
20.1.1 OVBIVIBW . . e 20-1[2]
20.1.2 CAN Features e 20-2 2]
20.2 CAN Functional Descriptiono 20-4 2]
20.2.1 Conventions and Definitions 20-4 [2]
20.2.2 Introduction 20-4 [2]
20.2.3 CAN Node Control i 20-10 [2]
20.2.4 Message Object List Structure 20-14 [2]
20.2.5 CAN Node Analysis Featuresc.ccvuu.... 20-19 [2]
20.2.6 Message Acceptance Filtering 20-22 [2]
20.2.7 Message Postprocessing Interface 20-25 [2]
20.2.8 Message Object DataHandling 20-29 [2]
20.2.9 Message Object Functionality 20-36 [2]
20.2.10 MultiCAN Kernel Registers 20-45 [2]
20.2.11 CAN Node Specific Registers 20-62 [2]
20.2.12 Message Object Reqisters 20-79 [2]
20.3 General Controland Status 20-102 [2]
20.3.1 Clock Control 20-102 [2]
20.3.2 PortinputControl 20-103 [2]
20.3.3 Suspend Mode 20-104 [2]
20.3.4 Interrupt Structure 20-105 [2]
20.4 MultiCAN Module Implementation 20-106 [2]
20.4.1 Interfaces of the CAN Module 20-106 [2]
20.4.2 Module Clock Generation, 20-107 [2]
20.4.3 Mode Control Behavior 20-116 [2]
20.4.4 Mode Control 20-117 [2]
20.4.5 Mode Control Register Description 20-119 [2]
20.4.6 Connection of External Signals 20-122 [2]
20.4.7 MultiCAN Module Register AddressMap 20-125 [2]

Keyword Index e 21-1[2]

User’s Manual L-13 V1.0, 2007-06

'T XC2000 Derivatives
Infineon :
v System Units (Vol. 1 of 2)

Preliminary Table Of Contents

Register Index 22-5[2]

User’s Manual L-14 V1.0, 2007-06

.. XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)

Preliminary Introduction

1 Introduction

The rapidly growing area of embedded control applications is representing one of the
most time-critical operating environments for today’s microcontrollers. Complex control
algorithms have to be processed based on a large number of digital as well as analog
input signals, and the appropriate output signals must be generated within a defined
maximum response time. Embedded control applications also are often sensitive to
board space, power consumption, and overall system cost.

Embedded control applications therefore require microcontrollers, which:

» offer a high level of system integration

» eliminate the need for additional peripheral devices and the associated software
overhead

» provide system security and fail-safe mechanisms

» provide effective means to control (and reduce) the device’s power consumption

The increasing complexity of embedded control applications requires microcontrollers
for new high-end embedded control systems to possess a significant increase in CPU
performance and peripheral functionality over conventional 8-bit controllers. To achieve
this high performance goal Infineon has decided to develop its families of 16-bit CMOS
microcontrollers without the constraints of backward compatibility.

Nonetheless the architectures of the 16-bit microcontroller families pursue successful
hardware and software concepts, which have been established in Infineon’s popular
8-bit controller families.

This established functionality, which has been the basis for system solutions in a wide
range of application areas, is amended with flexible peripheral modules and effective
power control features. The sum of this provides the prerequisites for powerful, yet
efficient systems-on-chip.

User’s Manual 11 V1.0, 2007-06
Intro, V1.0

.. XC2000 Derivatives
@'neﬂ System Units (Vol. 1 of 2)

Preliminary Introduction

About this Manual

This manual describes the functionality of a number of 16-bit microcontrollers of the
Infineon XC2000 Family.

These microcontrollers provide identical functionality to a large extent, but each device
type has specific unique features as indicated here.

The descriptions in this manual cover a superset of the provided features and refer to the
following derivatives:

Table 1-1 XC2000 Derivative Synopsis

Derivative® Package |CCU6 Mod. |ADC? Chan. |Interfaces
XC2287-xxF66L LQFP-144 |0,1,2,3 16 + 8 5 CAN Nodes,

6 Serial Channels
XC2286-xxF66L LQFP-144 |0,1 16 +8 3 CAN Nodes,

6 Serial Channels
XC2285-xxF66L LQFP-144 (0,1 12 2 CAN Nodes,

4 Serial Channels
XC2267-xxF66L LQFP-100 |0,1, 2,3 8+8 5 CAN Nodes,

6 Serial Channels
XC2264-xxF66L LQFP-100 |0,1 8 2 CAN Nodes,

4 Serial Channels
XC2387-xxF66L LOFP-144 |0,1 16 + 8 3 CAN Nodes,

6 Serial Channels
XC2365-xxF66L LQFP-100 |0,1 11+5 3 CAN Nodes,

6 Serial Channels

1) The derivatives are available with various memory sizes. For details, please refer to the corresponding Data

Sheets.

2) Analog input channels are listed for each Analog/Digital Converter module separately.

This manual is valid for these derivatives and describes all variations of the different
available temperature ranges and packages.

For simplicity, these various device types are referred to by the collective term XC2000
throughout this manual. The complete pro-electron conforming designations are listed in
the respective Data Sheets.

Some sections of this manual do not refer to all of the XC2000 derivatives which are
currently available or planned (such as devices with different types of on-chip memory
or peripherals). These sections contain respective notes wherever possible.

User’s Manual 1-2 V1.0, 2007-06
Intro, V1.0

.. XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)

Preliminary Introduction

1.1 Members of the 16-bit Microcontroller Family

The microcontrollers in the Infineon 16-bit family have been designed to meet the high
performance requirements of real-time embedded control applications. The architecture
of this family has been optimized for high instruction throughput and minimized response
time to external stimuli (interrupts). Intelligent peripheral subsystems have been
integrated to reduce the need for CPU intervention to a minimum extent. This also
minimizes the need for communication via the external bus interface. The high flexibility
of this architecture allows to serve the diverse and varying needs of different application
areas such as automotive, industrial control, or data communications.

The core of the 16-bit family has been developed with a modular family concept in mind.
All family members execute an efficient control-optimized instruction set (additional
instructions for members of the second generation). This allows easy and quick
implementation of new family members with different internal memory sizes and
technologies, different sets of on-chip peripherals, and/or different numbers of 1O pins.

The XBUS/LXBus concept (internal representation of the external bus interface)
provides a straightforward path for building application-specific derivatives by integrating
application-specific peripheral modules with the standard on-chip peripherals.

As programs for embedded control applications become larger, high level languages are
favored by programmers, because high level language programs are easier to write, to
debug and to maintain. The C166 Family supports this starting with its 2nd generation.

The 80C166-type microcontrollers were the first generation of the 16-bit controller
family. These devices established the C166 architecture.

The C165-type and C167-type devices are members of the second generation of this
family. This second generation is even more powerful due to additional instructions for
HLL support, an increased address space, increased internal RAM, and highly efficient
management of various resources on the external bus.

Enhanced derivatives of this second generation provide more features such as
additional internal high-speed RAM, an integrated CAN-Module, an on-chip PLL, etc.

The design of more efficient systems may require the integration of application-specific
peripherals to boost system performance while minimizing the part count. These efforts
are supported by the XBUS, defined for the Infineon 16-bit microcontrollers (second
generation). The XBUS is an internal representation of the external bus interface which
opens and simplifies the integration of peripherals by standardizing the required
interface. One representative taking advantage of this technology is the integrated CAN
module.

The C165-type devices are reduced functionality versions of the C167 because they do
not have the A/D converter, the CAPCOM units, and the PWM module. This results in a
smaller package, reduced power consumption, and design savings.

The C164-type devices, the C167CS derivatives, and some of the C161-type devices
are further enhanced by a flexible power management and form the third generation of

User’s Manual 1-3 V1.0, 2007-06
Intro, V1.0

.. XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)

Preliminary Introduction

the 16-bit controller family. This power management mechanism provides an effective
means to control the power that is consumed in a certain state of the controller and thus
minimizes the overall power consumption for a given application.

The XC16x derivatives represent the fourth generation of the 16-bit controller family.
The XC166 Family dramatically increases the performance of 16-bit microcontrollers by
several major improvements and additions. The MAC-unit adds DSP-functionality to
handle digital filter algorithms and greatly reduces the execution time of multiplications
and divisions. The 5-stage pipeline, single-cycle execution of most instructions, and
PEC-transfers within the complete addressing range increase system performance.
Debugging the target system is supported by integrated functions for On-Chip Debug
Support (OCDS).

The present XC2000 Family of microcontrollers builds the fifth generation of 16-bit
microcontrollers which provides 32-bit performance and takes users and applications a
considerable step towards industry’s target of systems on chip. Integrated memories and
peripherals allow compact systems, the integrated core power supply and control
reduces system requirements to one single voltage supply, the powerful combination of
CPU and MAC-unit is unleashed by optimized compilers. This leaves no performance
gap towards 32-bit systems.

A variety of different versions is provided which offer various kinds of on-chip program

memoryL):

e Mask-programmable ROM

* Flash memory

* OTP memory

* ROMless without non-volatile memory.

Also there are devices with specific functional units.

The devices may be offered in different packages, temperature ranges and speed
classes.

Additional standard and application-specific derivatives are planned and are in
development.

Note: Not all derivatives will be offered in all temperature ranges, speed classes,
packages, or program memory variations.

Information about specific versions and derivatives will be made available with the
devices themselves. Contact your Infineon representative for up-to-date material or refer
to http://www.infineon.com/microcontrollers.

Note: As the architecture and the basic features, such as the CPU core and built-in
peripherals, are identical for most of the currently offered versions of the XC2000,
descriptions within this manual that refer to the “XC2000” also apply to the other
variations, unless otherwise noted.

1) Not all derivatives are offered with all kinds of on-chip memory.

User’s Manual 1-4 V1.0, 2007-06
Intro, V1.0

.. XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)

Preliminary Introduction

1.2 Summary of Basic Features

The XC2000 devices are enhanced members of the Infineon family of full featured 16-bit
single-chip CMOS microcontrollers. The XC2000 combines the extended functionality
and performance of the C166SV2 Core with powerful on-chip peripheral subsystems
and on-chip memory units and provides several means for power reduction.

The following key features contribute to the high performance of the XC2000:

High Performance 16-bit CPU with Five-Stage Pipeline and MAC Unit

» Single clock cycle instruction execution

* 1 cycle minimum instruction cycle time (most instructions)

» 1 cycle multiplication (16-bit x 16-bit

» 4+ 17 cycles division (32-bit / 16-bit), 4 cycles delay, 17 cycles background execution
* 1 cycle multiply and accumulate instruction (MAC) execution

» Automatic saturation or rounding included

» Multiple high bandwidth internal data buses

» Register-based design with multiple, variable register banks

» Two additional fast register banks

» Fast context switching support

» 16 Mbytes of linear address space for code and data (von Neumann architecture)
» System stack cache support with automatic stack overflow/underflow detection

» High performance branch, call, and loop processing

» Zero-cycle jump execution

Control Oriented Instruction Set with High Efficiency

« Bit, byte, and word data types

» Flexible and efficient addressing modes for high code density

« Enhanced boolean bit manipulation with direct addressability of 6 Kbits for peripheral
control and user-defined flags

» Hardware traps to identify exception conditions during runtime

* HLL support for semaphore operations and efficient data access

Power Management Features

* Two 10 power domains fulfill system requirements from 3V to 5V

» Separately controllable core power domains support wake-up via external triggers or
on-chip timer while drastically reducing the power consumption

» Gated clock concept for improved power consumption and EMC

* Programmable system slowdown via clock generation unit

» Flexible management of peripherals, can be individually disabled

* Programmable frequency output

User’s Manual 1-5 V1.0, 2007-06
Intro, V1.0

.. XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)

Preliminary Introduction

Integrated On-Chip Memories

1 Kbyte on-chip Stand-By RAM (SBRAM) for data to preserved during power-saving
2 Kbytes Dual-Port RAM (DPRAM) for variables, register banks, and stacks

16 Kbytes on-chip high-speed Data SRAM (DSRAM) for variables and stacks

Up to 64 Kbytes on-chip high-speed Program/Data SRAM (PSRAM) for code and data
» Upto 764 Kbytes on-chip Flash Program Memory for instruction code or constant data

Note: The system stack can be located in any memory area within the complete
addressing range.

16-Priority-Level Interrupt System

* 96 interrupt nodes with separate interrupt vectors on 15 priority levels (8 group levels)
» 7 cycles minimum interrupt latency in case of internal program execution

» Fast external interrupts

* Programmable external interrupt source selection

» Programmable vector table (start location and step-width)

8-Channel Peripheral Event Controller (PEC

* Interrupt driven single cycle data transfer

* Programmable PEC interrupt request level, (15 down to 8)

» Transfer count option
(standard CPU interrupt after programmable number of PEC transfers)

» Separate interrupt level for PEC termination interrupts selectable

* Overhead from saving and restoring system state for interrupt requests eliminated

* Full 24-bit addresses for source and destination pointers, supporting transfers within
the total address space

Intelligent On-Chip Peripheral Subsystems

» Two synchronizable A/D Converters with programmable resolution (10-bit or 8-bit)
and conversion time (down to approx. 1 us), up to 24 analog input channels, auto scan
modes, channel injection, data reduction features

* One Capture/Compare Unit with 2 independent time bases,
very flexible PWM unit/event recording unit with different operating modes,
includes two 16-bit timers/counters, maximum resolution fgyg

e Up to Four Capture/Compare Units for flexible PWM Signal Generation (CCU6)

(3/6 Capture/Compare Channels and 1 Compare Channel)

e Two Multifunctional General Purpose Timer Units:

— GPT1: three 16-bit timers/counters, maximum resolution fgyg/4
— GPT2: two 16-bit timers/counters, maximum resolution fgyg/2

» Six Serial Channels with baud rate generator, receive/transmit FIFOs, programmable

data length and shift direction, usable as UART, SPI-like, IIC, 1IS, and LIN interface

User’s Manual 1-6 V1.0, 2007-06
Intro, V1.0

.. XC2000 Derivatives
@'neﬂ System Units (Vol. 1 of 2)

Preliminary Introduction

» Controller Area Network (MultiCAN) Module, Rev. 2.0B active,
up to five nodes operating independently or exchanging data via a gateway function,
Full-CAN/Basic-CAN

* Real Time Clock with alarm interrupt

* Watchdog Timer with programmable time intervals

» Bootstrap Loader for flexible system initialization

* Protection management for system configuration and control registers

On-Chip Debug Support

* On-chip debug controller and related interface to JTAG controller

» JTAG interface and break interface

» Hardware, software and external pin breakpoints

» Up to 4 instruction pointer breakpoints

» Debug event control, e.g. with monitor call or CPU halt or trigger of data transfer
» Dedicated DEBUG instructions with control via JTAG interface

» Access to any internal register or memory location via JTAG interface

» Single step support and watchpoints with MOV-injection

Up to 118 10 Lines With Individual Bit Addressability

» Tri-stated in input mode

» Push/pull or open drain output mode

* Programmable port driver control

* Two I/O power domains with a supply voltage range from 3.0 Vto 5.5V
(core-logic and oscillator input voltage is 1.5 V)

Various Temperature Ranges

« -40to +85°C
e -40to +125 °cV

Infineon CMOS Process

* Low power CMOS technology enables power saving Idle, Sleep, and Power Down
modes with flexible power management.

Green Plastic Low-Profile Quad Flat Pack (LQFP) Packages

* PG-LQFP-144, 20 x 20 mm body, 0.5 mm (19.7 mil) lead spacing,
surface mount technology

* PG-LQFP-100, 14 x 14 mm body, 0.5 mm (19.7 mil) lead spacing,
surface mount technology

1) Not all derivatives are offered in all temperature ranges.

User’s Manual 1-7 V1.0, 2007-06
Intro, V1.0

.. XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)

Preliminary Introduction

Complete Development Support

For the development tool support of its microcontrollers, Infineon follows a clear third
party concept. Currently around 120 tool suppliers world-wide, ranging from local niche
manufacturers to multinational companies with broad product portfolios, offer powerful
development tools for the Infineon C500, C800, XC800, C166, XC166, and TriCore
microcontroller families, guaranteeing a remarkable variety of price-performance
classes as well as early availability of high quality key tools such as compilers,
assemblers, simulators, debuggers or in-circuit emulators.

Infineon incorporates its strategic tool partners very early into the product development
process, making sure embedded system developers get reliable, well-tuned tool
solutions, which help them unleash the power of Infineon microcontrollers in the most
effective way and with the shortest possible learning curve.

The tool environment for the Infineon 16-bit microcontrollers includes the following tools:

» Compilers (C/C++)

* Macro-assemblers, linkers, locators, library managers, format-converters
» Architectural simulators

e HLL debuggers

» Real-time operating systems

* VHDL chip models

 In-circuit emulators (based on bondout or standard chips)

* Plug-in emulators

« Emulation and clip-over adapters, production sockets

» Logic analyzer disassemblers

» Starter kits

« Evaluation boards with monitor programs

 Industrial boards (also for CAN, FUZZY, PROFIBUS, FORTH applications)
* Low level driver software (CAN, PROFIBUS, LIN)

» Chip configuration code generation tool (DAVE)

User’s Manual 1-8 V1.0, 2007-06
Intro, V1.0

@ineon
-

XC2000 Derivatives
System Units (Vol. 1 of 2)

Preliminary

1.3 Abbreviations

The following acronyms and terms are used within this document:

ADC
ALE
ALU
ASC
CAN
CAPCOM
CISC
CMOS
CPU
DMU
EBC
ESFR
EVVR
Flash
GPR
GPT
HLL
lIC
s

10
JTAG
LIN
LQFP
LXBus
MAC
OCDS
OoTP
PEC
PLA

User’s Manual
Intro, V1.0

Analog Digital Converter

Address Latch Enable

Arithmetic and Logic Unit
Asynchronous/synchronous Serial Channel
Controller Area Network (License Bosch)
CAPture and COMpare unit

Complex Instruction Set Computing
Complementary Metal Oxide Silicon
Central Processing Unit

Data Management Unit

External Bus Controller

Extended Special Function Register
Embedded Validated Voltage Regulator
Non-volatile memory that may be electrically erased
General Purpose Register

General Purpose Timer unit

High Level Language

Inter Integrated Circuit (Bus)

Inter Integrated Circuit Sound (Bus)
Input/Output

Joint Test Access Group

Local Interconnect Network

Low Profile Quad Flat Pack

Internal representation of the external bus
Multiply/Accumulate (unit)

On-Chip Debug Support

One-Time Programmable memory
Peripheral Event Controller
Programmable Logic Array

1-9

Introduction

V1.0, 2007-06

.. XC2000 Derivatives
@'neﬂ System Units (Vol. 1 of 2)

Preliminary Introduction
PLL Phase Locked Loop

PMU Program Management Unit

PVC Power Validation Circuit

PWM Pulse Width Modulation

RAM Random Access Memory

RISC Reduced Instruction Set Computing

ROM Read Only Memory

RTC Real Time Clock

SFR Special Function Register

SSC Synchronous Serial Channel

SWD Supply Watchdog

UART Universal Asynchronous Receiver/Transmitter
usIC Universal Serial Interface Channel

1.4 Naming Conventions

The manifold bitfields used for control functions and status indication and the registers
housing them are equipped with unique names wherever applicable. Thereby these
control structures can be referred to by their names rather than by their location. This
makes the descriptions by far more comprehensible.

To describe regular structures (such as ports) indices are used instead of a plethora of
similar bit names, so bit 3 of port 5 is referred to as P5.3.

Where it helps to clarify the relation between several named structures, the next higher
level is added to the respective name to make it unambiguous.

The term ADCO_GLOBCTR clearly identifies register GLOBCTR as part of module

ADCO, the term SYSCONO.CLKSEL clearly identifies bitfield CLKSEL as part of register
SYSCONO.

User’s Manual 1-10 V1.0, 2007-06
Intro, V1.0

.. XC2000 Derivatives
@'nm System Units (Vol. 1 of 2)

Preliminary Architectural Overview

2 Architectural Overview

The architecture of the XC2000 core combines the advantages of both RISC and CISC
processors in a very well-balanced way. This computing and controlling power is
completed by the DSP-functionality of the MAC-unit. The XC2000 integrates this
powerful CPU core with a set of powerful peripheral units into one chip and connects
them very efficiently. On-chip memory blocks with dedicated buses and control units
store code and data. This combination of features results in a high performance
microcontroller, which is the right choice not only for today’s applications, but also for
future engineering challenges. One of the buses used concurrently on the XC2000 is the
LXBus, an internal representation of the external bus interface. This bus provides a
standardized method for integrating additional application-specific peripherals into
derivatives of the standard XC2000.

PSRAM DPRAM DSRAM
ocDS iIN

64 Kbytes 2 Kbytes 16 Kbytes Debug Support d—
Program Flash 0

256 Kbytes S S EBC

a0
§<: - K CPU - LN LXBus Control
Prc;gSrE;aEbFltash 115 = - External Bus
ytes a
C166SV2 - Core a CO””/O\' —
Program Flash 2
256 Kbytes
/ L WDT
Oscill IPLL, S F 5
scillators , System Fct.
42 Clock, Reset, Power Control, Interrupt & PEC — RTC %
; Stand-By RAM y
it Interrupt Bus
? r— ' e |
[[[[[[

ST T e T e s by’ STuTirTyY
ADC | ADC | GPT | cC2 [ccuses|:--|ccusq £ ' [usicz|usici|usico| mult
8-Bit/ | 8-Bit/ g @ |2ch,[2ch,|2ch,| caN
10-Bit | 10-Bit 7 172l [Tzl €| 64x | 64ax | 64x
8 Ch. |16 Ch. Buffer | Buffer | Buffer

IT8IIT13I [T13]
Rs232, | RS232, | RS232,
75 1] . . un, | un, | wun,
[1s] sp, | spi, | spi, | 5 ch
L6 || va | va VA e, nslnc, nslic, ns| va
2
[Pis | pPons [pPii| pPio | Po | pe [P7]re| P4 [P3| P2 | P | Po |

%8 /H/16 ﬁ6 ﬁlG ﬁS MTES ﬁS ﬁl?: ﬁS gS

MC_XC2X_BLOCKDIAGRAM

Figure 2-1 XC2000 Functional Block Diagram

User’s Manual 2-1 V1.0, 2007-06
ArchitectureX2K, V1.0

. XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)

Preliminary Architectural Overview

2.1 Basic CPU Concepts and Optimizations

The main core of the CPU consists of a set of optimized functional units including the
instruction fetch/processing pipelines, a 16-bit Arithmetic and Logic Unit (ALU), a 40-bit
Multiply and Accumulate Unit (MAC), an Address and Data Unit (ADU), an Instruction
Fetch Unit (IFU), a Register File (RF), and dedicated Special Function Registers (SFRS).

Single clock cycle execution of instructions results in superior CPU performance, while
maintaining C166 code compatibility. Impressive DSP performance, concurrent access
to different kinds of memories and peripherals boost the overall system performance.

PMUK— PSRAM
Flash/ROM
CPU
Prefetch | [csp| 1P | | VECSEG | 2-Stage
Unit Prefetch
CPUCON1 TFR Pipeline
Unit Injection/ > Piaine DPRAM
Exception
FIFO RS?turIS Handler
ac IFU IPIP
IDX0 QRO DPPO SPSEG [cp |
IDX1 QR1 DPP1 SP () T
QX0 DPP2 STKOV R1I5 A Il | =
QX1 DPP3 STKUN R14 [: =14
+- +- - GPRs] - - GPRs -
ADU| |k 11 . i _
. ——— — RL H R1
Multiply | MRW | Division Unit | | Bit-Mask-Gen. =0 | |)
Unit Multiply Unit Barrel-Shifter — .4: Y l
mcw _|||| wmbc | RE
MSW PSW +/-
[mon || wmoL ||| F -
[~vmaH || wmAL | - Buffer DSRAM
| zeros || oneEs ||| F . EBC
MAC ALU WB Peripherals
DMU ————
mca04917_x.vsd
Figure 2-2 CPU Block Diagram
User’s Manual 2-2 V1.0, 2007-06

ArchitectureX2K, V1.0

.. XC2000 Derivatives
@'neﬂ System Units (Vol. 1 of 2)

Preliminary Architectural Overview

Summary of CPU Features

* Opcode fully upward compatible with C166 Family
» 2-stage instruction fetch pipeline with FIFO for instruction pre-fetching
» 5-stage instruction execution pipeline
» Pipeline forwarding controls data dependencies in hardware
* Multiple high bandwidth buses for data and instructions
* Linear address space for code and data (von Neumann architecture)
* Nearly all instructions executed in one CPU clock cycle
» Fast multiplication (16-bit x 16-bit) in one CPU clock cycle
» Fast background execution of division (32-bit/16-bit) in 21 CPU clock cycles
* Built-in advanced MAC (Multiply Accumulate) Unit:
— Single cycle MAC instruction with zero cycle latency including a 16 x 16 multiplier
— 40-bit barrel shifter and 40-bit accumulator to handle overflows
— Automatic saturation to 32 bits or rounding included with the MAC instruction
— Fractional numbers supported directly
— One Finite Impulse Response Filter (FIR) tap per cycle with no circular buffer
management
« Enhanced boolean bit manipulation facilities
» High performance branch-, call-, and loop-processing
e Zero cycle jump execution
* Register-based design with multiple variable register banks (byte or word operands)
» Two additional fast register banks
» Variable stack with automatic stack overflow/underflow detection
» “Fast interrupt” and “Fast context switch” features

The high performance and flexibility of the CPU is achieved by a number of optimized
functional blocks (see Figure 2-2). Optimizations of the functional blocks are described
in detail in the following sections.

User’s Manual 2-3 V1.0, 2007-06
ArchitectureX2K, V1.0

.. XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)

Preliminary Architectural Overview

2.1.1 High Instruction Bandwidth/Fast Execution

Based on the hardware provisions, most of the XC2000'’s instructions can be executed
in just one clock cycle (1/fgys). This includes arithmetic instructions, logic instructions,
and move instructions with most addressing modes.

Special instructions such as JMPS take more than one machine cycle. Divide
instructions are mainly executed in the background, so other instructions can be
executed in parallel. Due to the prediction mechanism (see Section 4.2), correctly
predicted branch instructions require only one cycle or can even be overlaid with another
instruction (zero-cycle jump).

The instruction cycle time is dramatically reduced through the use of instruction
pipelining. This technique allows the core CPU to process portions of multiple sequential
instruction stages in parallel. Up to seven stages can operate in parallel:

The two-stage instruction fetch pipeline fetches and preprocesses instructions from
the respective program memory:

PREFETCH: Instructions are prefetched from the PMU in the predicted order. The
instructions are preprocessed in the branch detection unit to detect branches. The
prediction logic determines if branches are assumed to be taken or not.

FETCH: The instruction pointer for the next instruction to be fetched is calculated
according to the branch prediction rules. The branch folding unit preprocesses detected
branches and combines them with the preceding instructions to enable zero-cycle
branch execution. Prefetched instructions are stored in the instruction FIFO, while stored
instructions are moved from the instruction FIFO to the instruction processing pipeline.

The five-stage instruction processing pipeline executes the respective instructions:

DECODE: The previously fetched instruction is decoded and the GPR used for indirect
addressing is read from the register file, if required.

ADDRESS: All operand addresses are calculated. For instructions implicitly accessing
the stack the stack pointer (SP) is decremented or incremented.

MEMORY: All required operands are fetched.

EXECUTE: The specified operation (ALU or MAC) is performed on the previously
fetched operands. The condition flags are updated. Explicit write operations to CPU-
SFRs are executed. GPRs used for indirect addressing are incremented or
decremented, if required.

WRITE BACK: The result operands are written to the specified locations. Operands
located in the DPRAM are stored via the write-back buffer.

User’s Manual 2-4 V1.0, 2007-06
ArchitectureX2K, V1.0

.. XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)

Preliminary Architectural Overview

2.1.2 Powerful Execution Units

The 16-bit Arithmetic and Logic Unit (ALU) performs all standard (word) arithmetic
and logical operations. Additionally, for byte operations, signals are provided from bits 6
and 7 of the ALU result to set the condition flags correctly. Multiple precision arithmetic
is provided through a ‘CARRY-IN’ signal to the ALU from previously calculated portions
of the desired operation.

Most internal execution blocks have been optimized to perform operations on either 8-bit
or 16-bit quantities. Instructions have been provided as well to allow byte packing in
memory while providing sign extension of bytes for word wide arithmetic operations. The
internal bus structure also allows transfers of bytes or words to or from peripherals based
on the peripheral requirements.

A set of consistent flags is updated automatically in the PSW after each arithmetic,
logical, shift, or movement operation. These flags allow branching on specific conditions.
Support for both signed and unsigned arithmetic is provided through user-specifiable
branch tests. These flags are also preserved automatically by the CPU upon entry into
an interrupt or trap routine.

A 16-bit barrel shifter provides multiple bit shifts in a single cycle. Rotates and arithmetic
shifts are also supported.

The Multiply and Accumulate Unit (MAC) performs extended arithmetic operations
such as 32-bit addition, 32-bit subtraction, and single-cycle 16-bit x 16-bit multiplication.
The combined MAC operations (multiplication with cumulative addition/subtraction)
represent the major part of the DSP performance of the CPU.

The Address Data Unit (ADU) contains two independent arithmetic units to generate,
calculate, and update addresses for data accesses. The ADU performs the following
major tasks:

» The Standard Address Unit supports linear arithmetic for the short, long, and indirect
addressing modes. It also supports data paging and stack handling.

» The DSP Address Generation Unit contains an additional set of address pointers and
offset registers which are used in conjunction with the CoXXX instructions only.

The CPU provides a lot of powerful addressing modes for word, byte, and bit data
accesses (short, long, indirect). The different addressing modes use different formats
and have different scopes.

Dedicated bit processing instructions provide efficient control and testing of peripherals
while enhancing data manipulation. These instructions provide direct access to two
operands in the bit-addressable space without requiring them to be moved into
temporary flags. Logical instructions allow the user to compare and modify a control bit
for a peripheral in one instruction. Multiple bit shift instructions (single cycle execution)
avoid long instruction streams of single bit shift operations. Bitfield instructions allow the
modification of multiple bits from one operand in a single instruction.

User’s Manual 2-5 V1.0, 2007-06
ArchitectureX2K, V1.0

.. XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)

Preliminary Architectural Overview

2.1.3 High Performance Branch-, Call-, and Loop-Processing

Pipelined execution delivers maximum performance with a stream of subsequent
instructions. Any disruption requires the pipeline to be refilled and the new instruction to
step through the pipeline stages. Due to the high percentage of branching in controller
applications, branch instructions have been optimized to require pipeline refilling only in
special cases. This is realized by detecting and preprocessing branch instructions in the
prefetch stage and by predicting the respective branch target address.

Prefetching then continues from the predicted target address. If the prediction was
correct subsequent instructions can be fed to the execution pipeline without a gap, even
if a branch is executed, i.e. the code execution is not linear. Branch target prediction (see
also Section 4.2.1) uses the following rules:

» Unconditional branches: Branch prediction is trivial in this case, as the branches will
always be taken and the target address is defined. This applies to implicitly
unconditional branches such as JMPS, CALLR, or RET as well as to branches with
condition code “unconditional” such as JMPI cc_UC.

» Fixed prediction: Branch instructions which are often used to realize loops are
assumed to be taken if they branch backward to a previous location (the begin of the
loop). This applies to conditional branches such as JMPR cc_XX or JNB.

» Variable prediction: In this case the respective prediction (taken or not taken) is
coded into the instruction and can, therefore, be selected for each individual branch
instruction. Thus, the software designer can optimize the instruction flow to the
specific code to be executed?). This applies to the branch instructions JMPA and
CALLA.

» Conditional indirect branches: These branches are always assumed to be not
taken. This applies to branch instructions JMPI cc_XX, [Rw] and CALLI cc_XX, [Rw].

The system state information is saved automatically on the internal system stack, thus
avoiding the use of instructions to preserve state upon entry and exit of interrupt or trap
routines. Call instructions push the value of the IP on the system stack, and require the
same execution time as branch instructions. Additionally, instructions have been
provided to support indirect branch and call instructions. This feature supports
implementation of multiple CASE statement branching in assembler macros and high
level languages.

D The programming tools accept either dedicated mnemonics for each prediction leaving the choice up to
programmer, or they accept generic mnemonics and apply their own prediction rules.

User’s Manual 2-6 V1.0, 2007-06
ArchitectureX2K, V1.0

.. XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)

Preliminary Architectural Overview

2.1.4 Consistent and Optimized Instruction Formats

To obtain optimum performance in a pipelined design, an instruction set has been
designed which incorporates concepts from Reduced Instruction Set Computing (RISC).
These concepts primarily allow fast decoding of the instructions and operands while
reducing pipeline holds. These concepts, however, do not preclude the use of complex
instructions required by microcontroller users. The instruction set was designed to meet
the following goals:

* Provide powerful instructions for frequently-performed operations which traditionally
have required sequences of instructions. Avoid transfer into and out of temporary
registers such as accumulators and carry bits. Perform tasks in parallel such as saving
state upon entry into interrupt routines or subroutines.

» Avoid complex encoding schemes by placing operands in consistent fields for each
instruction and avoid complex addressing modes which are not frequently used.
Consequently, the instruction decode time decreases and the development of
compilers and assemblers is simplified.

» Provide most frequently used instructions with one-word instruction formats. All other
instructions use two-word formats. This allows all instructions to be placed on word
boundaries: this alleviates the need for complex alignment hardware. It also has the
benefit of increasing the range for relative branching instructions.

The high performance of the CPU-hardware can be utilized efficiently by a programmer
by means of the highly functional XC2000 instruction set which includes the following
instruction classes:

» Arithmetic Instructions

* DSP Instructions

» Logical Instructions

» Boolean Bit Manipulation Instructions
» Compare and Loop Control Instructions
» Shift and Rotate Instructions

» Prioritize Instruction

» Data Movement Instructions

» System Stack Instructions

* Jump and Call Instructions

* Return Instructions

» System Control Instructions

* Miscellaneous Instructions

Possible operand types are bits, bytes, words, and doublewords. Specific instructions
support the conversion (extension) of bytes to words. Various direct, indirect, and
immediate addressing modes are provided to specify the required operands.

User’s Manual 2-7 V1.0, 2007-06
ArchitectureX2K, V1.0

.. XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)

Preliminary Architectural Overview

2.1.5 Programmable Multiple Priority Interrupt System

The XC2000 provides 96 separate interrupt nodes that may be assigned to 16 priority
levels with 8 group priorities on each level. Most interrupt sources are connected to a
dedicated interrupt node. In some cases, multi-source interrupt nodes are incorporated
for efficient use of system resources. These nodes can be activated by several source
requests and are controlled via interrupt subnode control registers.

The following enhancements within the XC2000 allow processing of a large number of
interrupt sources:

» Peripheral Event Controller (PEC): This processor is used to off-load many interrupt
requests from the CPU. It avoids the overhead of entering and exiting interrupt or trap
routines by performing single-cycle interrupt-driven byte or word data transfers
between any two locations with an optional increment of the PEC source pointer, the
destination pointer, or both. Only one cycle is ‘stolen’ from the current CPU activity to
perform a PEC service.

» Multiple Priority Interrupt Controller: This controller allows all interrupts to be assigned
any specified priority. Interrupts may also be grouped, which enables the user to
prevent similar priority tasks from interrupting each other. For each of the interrupt
nodes, there is a separate control register which contains an interrupt request flag, an
interrupt enable flag, and an interrupt priority bitfield. After being accepted by the CPU,
an interrupt service can be interrupted only by a higher prioritized service request. For
standard interrupt processing, each of the interrupt nodes has a dedicated vector
location.

* Multiple Register Banks: Two local register banks for immediate context switching add
to a relocatable global register bank. The user can specify several register banks
located anywhere in the internal DPRAM and made of up to sixteen general purpose
registers. A single instruction switches from one register bank to another (switching
banks flushes the pipeline, changing the global bank requires a validation sequence).

The XC2000 is capable of reacting very quickly to non-deterministic events because its
interrupt response time is within a very narrow range of typically 7 clock cycles (in the
case of internal program execution). Its fast external interrupt inputs are sampled every
clock cycle and allow even very short external signals to be recognized.

The XC2000 also provides an excellent mechanism to identify and process exceptions
or error conditions that arise during run-time, so called ‘Hardware Traps’. A hardware
trap causes an immediate non-maskable system reaction which is similar to a standard
interrupt service (branching to a dedicated vector table location). The occurrence of a
hardware trap is additionally signified by an individual bit in the trap flag register (TFR).
Unless another, higher prioritized, trap service is in progress, a hardware trap will
interrupt any current program execution. In turn, a hardware trap service can normally
not be interrupted by a standard or PEC interrupt.

Software interrupts are supported by means of the ‘TRAP’ instruction in combination with
an individual trap (interrupt) number.

User’s Manual 2-8 V1.0, 2007-06
ArchitectureX2K, V1.0

.. XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)

Preliminary Architectural Overview

2.1.6 Interfaces to System Resources

The CPU of the XC2000 interfaces to the system resources via several bus systems
which contribute to the overall performance by transferring data concurrently. This
avoids stalling the CPU because instructions or operands need to be transferred.

The Dual Port RAM (DPRAM) is directly coupled to the CPU because it houses the
global register banks. Transfers from/to these locations affect the performance and are,
therefore, carefully optimized.

The Program Management Unit (PMU) controls accesses to the on-chip program
memory blocks such as the ROM/Flash module and the Program/Data RAM (PSRAM)
and also fetches instructions from external memory.

The 64-bit interface between the PMU and the CPU delivers the instruction words, which
are requested by the CPU. The PMU decides whether the requested instruction word
has to be fetched from on-chip memory or from external memory.

The Data Management Unit (DMU) controls accesses to the on-chip Data RAM
(DSRAM), to the on-chip peripherals connected to the peripheral bus, and to resources
on the external bus. External accesses (including accesses to peripherals connected to
the on-chip LXBus) are executed by the External Bus Controller (EBC).

The 16-bit interface between the DMU and the CPU handles all data transfers
(operands). Data accesses by the CPU are distributed to the appropriate buses
according to the defined address map.

PMU and DMU are directly coupled to perform cross-over transfers with high speed.
Crossover transfers are executed in both directions:

* PMU via DMU: Code fetches from external locations are redirected via the DMU to
EBC. Thus, the XC2000 can execute code from external resources. No code can be
fetched from the Data RAM (DSRAM).

« DMU via PMU: Data accesses can also be executed to on-chip resources controlled
by the PMU. This includes the following types of transfers:

— Read a constant from the on-chip program ROM/Flash

— Read data from the on-chip PSRAM

— Write data to the on-chip PSRAM (required prior to executing out of it)
— Program/Erase the on-chip Flash memory

User’s Manual 2-9 V1.0, 2007-06
ArchitectureX2K, V1.0

.. XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)

Preliminary Architectural Overview

2.2 On-Chip System Resources

The XC2000 controllers provide a number of powerful system resources designed
around the CPU. The combination of CPU and these resources results in the high
performance of the members of this controller family.

Peripheral Event Controller (PEC) and Interrupt Control

The Peripheral Event Controller enables response to an interrupt request with a single
data transfer (word or byte) which consumes only one instruction cycle and does not
require saving and restoring the machine status. Each interrupt source is prioritized for
every machine cycle in the interrupt control block. If PEC service is selected, a PEC
transfer is started. If CPU interrupt service is requested, the current CPU priority level
stored in the PSW register is tested to determine whether a higher priority interrupt is
currently being serviced. When an interrupt is acknowledged, the current state of the
machine is saved on the internal system stack and the CPU branches to the system
specific vector for the peripheral.

The PEC contains a set of SFRs which store the count value and control bits for eight
data transfer channels. In addition, the PEC uses a dedicated area of RAM which
contains the source and destination addresses. The PEC is controlled in a manner
similar to any other peripheral: through SFRs containing the desired configuration of
each channel.

An individual PEC transfer counter is implicitly decremented for each PEC service
except in the continuous transfer mode. When this counter reaches zero, a standard
interrupt is performed to the vector location related to the corresponding source. PEC
services are very well suited, for example, to moving register contents to/from a memory
table. The XC2000 has eight PEC channels, each of which offers such fast interrupt-
driven data transfer capabilities.

Memory Areas

The memory space of the XC2000 is configured in a Von Neumann architecture. This
means that code memory, data memory, registers, and 10 ports are organized within the
same linear address space which covers up to 16 Mbytes. The entire memory space can
be accessed bytewise or wordwise. Particular portions of the on-chip memory have been
made directly bit addressable as well.

Note: The actual memory sizes depend on the selected device type. This overview
describes the maximum block sizes.

768 Kbytes of on-chip Flash memory store code or constant data. The on-chip Flash
memory consists of 3 Flash modules, each organized as 64 4-Kbyte sectors. Each
sector can be separately write protectedl), erased and programmed (in blocks of 128
bytes). The complete Flash area can be read-protected. A user-defined password
sequence temporarily unlocks protected areas. The Flash modules combine 128-bit

User’s Manual 2-10 V1.0, 2007-06
ArchitectureX2K, V1.0

.. XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)

Preliminary Architectural Overview

read accesses with protected and efficient writing algorithms for programming and
erasing. Dynamic error correction provides extremely high read data security for all read
accesses. Accesses to different Flash modules can be executed in parallel.

Note: Program execution from on-chip program memory is the fastest of all possible
alternatives and results in maximum performance. The type of the on-chip
program memory depends on the chosen derivative. On-chip program memory
also includes the PSRAM.

64 Kbytes of on-chip Program SRAM (PSRAM) are provided to store user code or
data. The PSRAM is accessed via the PMU and is, therefore, optimized for code fetches.
A section of the PSRAM with programmable size can be write-protected.

16 Kbytes of on-chip Data SRAM (DSRAM) are provided as a storage for general user
data. The DSRAM is accessed via a separate interface and is, therefore, optimized for
data accesses.

2 Kbytes of on-chip Dual-Port RAM (DPRAM) are provided as a storage for user
defined variables, for the system stack, and in particular for general purpose register
banks. A register bank can consist of up to 16 wordwide (RO to R15) and/or bytewide
(RLO, RHO, ..., RL7, RH7) so-called General Purpose Registers (GPRS).

The upper 256 bytes of the DPRAM are directly bitaddressable. When used by a GPR,
any location in the DPRAM is bitaddressable.

1 Kbyte of on-chip Stand-By SRAM (SBRAM) is provided as a storage for system-
relevant user data that must be preserved while the major part of the device is powered
down. The SBRAM is accessed via a specific interface and is powered via domain M.

The CPU has an actual register context of up to 16 wordwide and/or bytewide global
GPRs at its disposal, which are physically located within the on-chip RAM area. A
Context Pointer (CP) register determines the base address of the active global register
bank to be accessed by the CPU at a time. The number of register banks is restricted
only by the available internal RAM space. For easy parameter passing, a register bank
may overlap other register banks.

A system stack of up to 32 Kwords is provided as storage for temporary data. The system
stack can be located anywhere within the complete addressing range and it is accessed
by the CPU via the Stack Pointer (SP) register and the Stack Pointer Segment (SPSEG)
register. Two separate SFRs, STKOV and STKUN, are implicitly compared against the
stack pointer value upon each stack access for the detection of a stack overflow or
underflow. This mechanism also supports the control of a bigger virtual stack. Maximum
performance for stack operations is achieved by allocating the system stack to internal
data RAM areas (DPRAM, DSRAM).

1) To save control bits, sectors are clustered for protection purposes, they remain separate for programming/
erasing.

User’s Manual 2-11 V1.0, 2007-06
ArchitectureX2K, V1.0

XC2000 Derivatives
System Units (Vol. 1 of 2)

@fineon
-

Preliminary

Architectural Overview

Hardware detection of the selected memory space is placed at the internal memory
decoders and allows the user to specify any address directly or indirectly and obtain the
desired data without using temporary registers or special instructions.

For Special Function Registers three areas of the address space are reserved: The
standard Special Function Register area (SFR) uses 512 bytes, while the Extended
Special Function Register area (ESFR) uses the other 512 bytes. A range of 4 Kbytes is
provided for the internal 10 area (XSFR). SFRs are wordwide registers which are used
for controlling and monitoring functions of the different on-chip units. Unused SFR
addresses are reserved for future members of the XC2000 Family with enhanced
functionality. Therefore, they should either not be accessed, or written with zeros, to
ensure upward compatibility.

In order to meet the needs of designs where more memory is required than is provided
on chip, up to 12 Mbytes (approximately, see Table 2-1) of external RAM and/or ROM
can be connected to the microcontroller. The External Bus Interface also provides

access to external peripherals.

Table 2-1 XC2000 Memory Map

Address Area Start Loc. |End Loc. |AreaSize? |Notes

IMB register space FF'FFOOy |FF'FFFFyL | 256 Bytes —

Reserved (Access trap) | FO'0000y | FF'FEFF | <1 Mbyte Minus IMB reg.
Reserved for EPSRAM | E9'0000y |EFFFFF, |448 Kbytes | Mirrors EPSRAM
Emulated PSRAM E80000 |E8'FFFFy |64 Kbytes Flash timing
Reserved for PSRAM | E1'0000y |E7'FFFFy |448 Kbytes | Mirrors PSRAM
Program SRAM EO0’0000y |EOFFFFy |64 Kbytes Maximum speed
Reserved for pr. mem. |CC’0000y |DF'FFFFy |<1.25 Mbytes |—

Program Flash 2 C80000y |CBFFFFy |256 Kbytes |-

Program Flash 1 C4'0000y |C7'FFFFy |256 Kbytes |-

Reserved Sector (PFO) | C3'FO00, |C3'FFFF, |4 Kbytes Used internally
Program Flash O C0'0000y |C3'EFFFy |252 Kbytes |-

External memory area |40'0000y |BFFFFFy |8 Mbytes -

Available Ext. IO area? 20’5800y |3FFFFFy |<2 Mbytes | Minus USIC/CAN
USIC registers 204000y |20'57FFy |6 Kbytes Accessed via EBC
MultiCAN registers 20'0000y |20'3FFFy |16 Kbytes Accessed via EBC
External memory area | 01’0000y |1FFFFFy |<2 Mbytes Minus segment O
SFR area O0O'FEOOy |OO'FFFFy |0.5 Kbyte -

Dual-Port RAM 00'F600y |OO'FDFFy |2 Kbytes -

User’s Manual 2-12 V1.0, 2007-06

ArchitectureX2K, V1.0

@ineon
-

XC2000 Derivatives

System Units (Vol. 1 of 2)

Preliminary Architectural Overview
Table 2-1 XC2000 Memory Map (cont'd)

Address Area Start Loc. |End Loc. |Area Size? |Notes

Reserved for DPRAM | 00'F2004 |O0O0’'F5FFy |1 Kbyte —

ESFR area 00'FO00y |O0'F1FF4 |0.5 Kbyte -

XSFR area 00'EO00y |OO0’EFFFy |4 Kbytes -

Data SRAM 00’A000 |OO'DFFFy |16 Kbytes —

Reserved for DSRAM | 00’8000, |00'9FFF, |8 Kbytes -

External memory area |00'0000 |00'7FFFy |32 Kbytes -

1) The areas marked with “<” are slightly smaller than indicated, see column “Notes”.

2) several pipeline optimizations are not active within the external 10 area. This is necessary to control external

peripherals properly.

Note: For an overview of the available memory sections for the different derivatives,
please refer to Table 1-1 "XC2000 Derivative Synopsis" on Page 1-2.

User’s Manual
ArchitectureX2K, V1.0

2-13

V1.0, 2007-06

.. XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)

Preliminary Architectural Overview

External Bus Interface

To meet the needs of designs where more memory is required than is provided on chip,
up to 12 Mbytes of external RAM/ROM/Flash or peripherals can be connected to the
XC2000 microcontroller via its external bus interface.

All of the external memory accesses are performed by a particular on-chip External Bus
Controller (EBC). It can be programmed either to Single Chip Mode when no external

memory is required, or to an external bus mode with the following possible selections?):

* Address Bus Width with a range of 0 ... 24-bit
» Data Bus Width 8-bit or 16-bit
* Bus Operation Multiplexed or Demultiplexed

In the demultiplexed bus modes, addresses are output on Port 0 and Port 1 and data is
input/output on Port 10 and Port 2. In the multiplexed bus modes both addresses and
data use Port 10 and Port 2 for input/output. The high order address (segment) lines use
Port 2. The number of active segment address lines is selectable, restricting the external
address space to 8 Mbytes ... 64 Kbytes. This is required when interface lines are
assigned to Port 2.

For up to five address areas the bus mode (multiplexed/demultiplexed), the data bus
width (8-bit/16-bit) and even the length of a bus cycle (waitstates, signal delays) can be
selected independently. This allows access to a variety of memory and peripheral
components directly and with maximum efficiency.

Access to very slow memories or modules with varying access times is supported via a
particular ‘Ready’ function. The active level of the control input signal is selectable.

A HOLD/HLDA protocol is available for bus arbitration and allows the sharing of external
resources with other bus masters.

The external bus timing is related to the rising edge of the reference clock output
CLKOUT. The external bus protocol is compatible with that of the standard C166 Family.

For applications which require less than 64 Kbytes of address space, a non-segmented
memory model can be selected, where all locations can be addressed by 16 bits. Thus,
the upper Port 2 is not needed as an output for the upper address bits (Axx ... A16), as
Is the case when using the segmented memory model.

The EBC also controls accesses to resources connected to the on-chip LXBus. The
LXBus is an internal representation of the external bus and allows accessing integrated
peripherals and modules in the same way as external components.

The MultiCAN module and the USIC modules are connected to and accessed via the
LXBus.

1) Bus modes are switched dynamically if several address windows with different mode settings are used.

User’s Manual 2-14 V1.0, 2007-06
ArchitectureX2K, V1.0

.. XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)

Preliminary Architectural Overview

2.3 On-Chip Peripheral Blocks

The XC2000 Family clearly separates peripherals from the core. This structure permits
the maximum number of operations to be performed in parallel and allows peripherals to
be added or deleted from family members without modifications to the core. Each
functional block processes data independently and communicates information over
common buses. Peripherals are controlled by data written to the respective Special
Function Registers (SFRs). These SFRs are located within either the standard SFR area
(OO'FEOOQy ... O0’FFFFy), the extended ESFR area (00’FO00y ... 00’F1FF), or within
the internal IO area (00'EO0Q, ... OO'EFFF).

These built-in peripherals either allow the CPU to interface with the external world or
provide functions on-chip that otherwise would need to be added externally in the
respective system.

The XC2000 generic peripherals are:

* Two General Purpose Timer Blocks (GPT1 and GPT2)

* A Watchdog Timer

» A Capture/Compare unit (CAPCOM2)

* Up to Four Enhanced Capture/Compare units (CCU60, CCU61, CCU62, CCU63)
» Two 10-bit Analog/Digital Converters (ADCO, ADC1)

* A Real Time Clock (RTC)

» Thirteen I/O ports with a total of 118(75) I/O lines

Because the LXBus is the internal representation of the external bus, it does not support
bit-addressing. Accesses are executed by the EBC as if it were external accesses. The
LXBus connects on-chip peripherals to the CPU:

* MultiCAN module with up to 5 CAN nodes and gateway functionality
* Three Serial Interface Modules providing six serial channels

Each peripheral also contains a set of Special Function Registers (SFRs) which control
the functionality of the peripheral and temporarily store intermediate data results. Each
peripheral has an associated set of status flags. Individually selected clock signals are
generated for each peripheral from binary multiples of the master clock.

Note: For an overview of the available peripherals for the different derivatives, please
refer to Table 1-1 "XC2000 Derivative Synopsis" on Page 1-2.

User’s Manual 2-15 V1.0, 2007-06
ArchitectureX2K, V1.0

.. XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)

Preliminary Architectural Overview

Peripheral Interfaces

The on-chip peripherals generally have two different types of interfaces: an interface to
the CPU and an interface to external hardware. Communication between the CPU and
peripherals is performed through Special Function Registers (SFRs) and interrupts. The
SFRs serve as control/status and data registers for the peripherals. Interrupt requests
are generated by the peripherals based on specific events which occur during their
operation, such as operation complete, error, etc.

To interface with external hardware, specific pins of the parallel ports are used, when an
input or output function has been selected for a peripheral. During this time, the port pins
are controlled either by the peripheral (when used as outputs) or by the external
hardware which controls the peripheral (when used as inputs). This is called the
‘alternate (input or output) function’ of a port pin, in contrast to its function as a general
purpose I/O pin.

Peripheral Timing

Internal operation of the CPU and peripherals is based on the master clock (fy,c). The
clock generation unit uses the on-chip oscillator to derive the master clock from the
crystal or from the external clock signal. The clock signal gated to the peripherals is
independent from the clock signal that feeds the CPU. During Idle mode, the CPU’s clock
is stopped while the peripherals continue their operation. Peripheral SFRs may be
accessed by the CPU once per state. When an SFR is written to by software in the same
state where it is also to be modified by the peripheral, the software write operation has
priority. Further details on peripheral timing are included in the specific sections
describing each peripheral.

Programming Hints

» Access to SFRs: All SFRs reside in data page 3 of the memory space. The following
addressing mechanisms allow access to the SFRs:

— Indirect or direct addressing with 16-bit (mem) addresses must guarantee that the
used data page pointer (DPPO ... DPP3) selects data page 3.

— Accesses via the Peripheral Event Controller (PEC) use the SRCPx and DSTPx
pointers instead of the data page pointers.

— Short 8-bit (reg) addresses to the standard SFR area do not use the data page
pointers but directly access the registers within this 512-byte area.

— Short 8-bit (reg) addresses to the extended ESFR area require switching to the
512-byte Extended SFR area. This is done via the EXTension instructions EXTR,
EXTP(R), EXTS(R).

* Byte Write Operations to wordwide SFRs via indirect or direct 16-bit (mem)
addressing or byte transfers via the PEC force zeros in the non-addressed byte. Byte
write operations via short 8-bit (reg) addressing can access only the low byte of an
SFR and force zeros in the high byte. It is therefore recommended, to use the bitfield

User’s Manual 2-16 V1.0, 2007-06
ArchitectureX2K, V1.0

.. XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)

Preliminary Architectural Overview

instructions (BFLDL and BFLDH) to write to any number of bits in either byte of an
SFR without disturbing the non-addressed byte and the unselected bits.

* Reserved Bits: Some of the bits which are contained in the XC2000’'s SFRs are
marked as ‘Reserved’. User software should never write ‘1’s to reserved bits. These
bits are currently not implemented and may be used in future products to invoke new
functions. In that case, the active state for those new functions will be ‘1’, and the
inactive state will be ‘0. Therefore writing only ‘O’s to reserved locations allows
portability of the current software to future devices. After read accesses, reserved bits
should be ignored or masked out.

Capture/Compare Unit (CAPCOM?2)

The CAPCOM units support generation and control of timing sequences on up to
16 channels with a maximum resolution of 1 system clock cycle (8 cycles in staggered
mode). The CAPCOM unit is typically used to handle high speed I/O tasks such as pulse
and waveform generation, pulse width modulation (PMW), Digital to Analog (D/A)
conversion, software timing, or time recording relative to external events.

Two 16-bit timers (T7/T8) with reload registers provide two independent time bases for
each capture/compare register.

The input clock for the timers is programmable to several prescaled values of the internal
system clock, or may be derived from an overflow/underflow of timer T6 in module GPT2.
This provides a wide range of variation for the timer period and resolution and allows
precise adjustments to the application specific requirements. In addition, external count
inputs for CAPCOM timer T7 allow event scheduling for the capture/compare registers
relative to external events.

The capture/compare register array contains 16 dual purpose capture/compare
registers, each of which may be individually allocated to either CAPCOM timer T7 or T8
and programmed for capture or compare function.

All registers of each module have each one port pin associated with it which serves as
an input pin for triggering the capture function, or as an output pin to indicate the
occurrence of a compare event.

User’s Manual 2-17 V1.0, 2007-06
ArchitectureX2K, V1.0

.. XC2000 Derivatives
@'neﬂ System Units (Vol. 1 of 2)

Preliminary Architectural Overview

Table 2-2 Compare Modes (CAPCOM2)

Compare Modes Function
Mode 0 Interrupt-only compare mode;

several compare interrupts per timer period are possible
Mode 1 Pin toggles on each compare match;

several compare events per timer period are possible
Mode 2 Interrupt-only compare mode;

only one compare interrupt per timer period is generated
Mode 3 Pin set ‘1’ on match; pin reset ‘0’ on compare timer overflow;

only one compare event per timer period is generated
Double Register Two registers operate on one pin;
Mode pin toggles on each compare match;

several compare events per timer period are possible

Single Event Mode Generates single edges or pulses;
can be used with any compare mode

When a capture/compare register has been selected for capture mode, the current
contents of the allocated timer will be latched (‘captured’) into the capture/compare
register in response to an external event at the port pin which is associated with this
register. In addition, a specific interrupt request for this capture/compare register is
generated. Either a positive, a negative, or both a positive and a negative external signal
transition at the pin can be selected as the triggering event.

The contents of all registers which have been selected for one of the five compare modes
are continuously compared with the contents of the allocated timers.

When a match occurs between the timer value and the value in a capture/compare
register, specific actions will be taken based on the selected compare mode.

User’s Manual 2-18 V1.0, 2007-06
ArchitectureX2K, V1.0

.. XC2000 Derivatives
@'neﬂ System Units (Vol. 1 of 2)

Preliminary Architectural Overview

Capture/Compare Units CCU6

The CCUG units support generation and control of timing sequences on up to three 16-
bit capture/compare channels plus one independent 16-bit compare channel.

In compare mode, the CCUG6 units provide two output signals per channel which have
inverted polarity and non-overlapping pulse transitions (deadtime control). The compare
channel can generate a single PWM output signal and is further used to modulate the
capture/compare output signals.

In capture mode the contents of compare timer T12 is stored in the capture registers
upon a signal transition at pins CCx.

The output signals can be generated in edge-aligned or center-aligned PWM mode.
They are generated continuously or in single-shot mode.

Compare timers T12 and T13 are free running timers which are clocked by the prescaled
system clock.

For motor control applications (brushless DC-drives) both subunits may generate
versatile multichannel PWM signals which are basically either controlled by compare
timer T12 or by a typical hall sensor pattern at the interrupt inputs (block commutation).
The latter mode provides noise filtering for the hall inputs and supports automatic
rotational speed measurement.

The trap function offers a fast emergency stop without CPU activity. Triggered by an
external signal (CTRAP) the outputs are switched to selectable logic levels which can be
adapted to the connected power stages.

Note: The number of available CCU6 units and channels depends on the selected
device type.

User’s Manual 2-19 V1.0, 2007-06
ArchitectureX2K, V1.0

.. XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)

Preliminary Architectural Overview

General Purpose Timer (GPT12E) Unit

The GPT12E unit represents a very flexible multifunctional timer/counter structure which
may be used for many different time related tasks such as event timing and counting,
pulse width and duty cycle measurements, pulse generation, or pulse multiplication.

The GPT12E unit incorporates five 16-bit timers which are organized in two separate
blocks, GPT1 and GPT2. Each timer in each block may operate independently in a
number of different modes, or may be concatenated with another timer of the same
block.

Each of the three timers T2, T3, T4 of block GPT1 can be configured individually for one
of four basic modes of operation, which are Timer, Gated Timer, Counter, and
Incremental Interface Mode. In Timer Mode, the input clock for a timer is derived from
the system clock, divided by a programmable prescaler, while Counter Mode allows a
timer to be clocked in reference to external events.

Pulse width or duty cycle measurement is supported in Gated Timer Mode, where the
operation of a timer is controlled by the ‘gate’ level on an external input pin. For these
purposes, each timer has one associated port pin (TXIN) which serves as gate or clock
input. The maximum resolution of the timers in block GPT1 is 4 system clock cycles.

The count direction (up/down) for each timer is programmable by software or may
additionally be altered dynamically by an external signal on a port pin (TXEUD) to
facilitate e.g. position tracking.

In Incremental Interface Mode the GPTL1 timers (T2, T3, T4) can be directly connected
to the incremental position sensor signals A and B via their respective inputs TxIN and
TXEUD. Direction and count signals are internally derived from these two input signals,
so the contents of the respective timer Tx corresponds to the sensor position. The third
position sensor signal TOPO can be connected to an interrupt input.

Timer T3 has an output toggle latch (T30OTL) which changes its state on each timer over-
flow/underflow. The state of this latch may be output on pin T30OUT e.g. for time out
monitoring of external hardware components. It may also be used internally to clock
timers T2 and T4 for measuring long time periods with high resolution.

In addition to their basic operating modes, timers T2 and T4 may be configured as reload
or capture registers for timer T3. When used as capture or reload registers, timers T2
and T4 are stopped. The contents of timer T3 is captured into T2 or T4 in response to a
signal at their associated input pins (TxIN). Timer T3 is reloaded with the contents of T2
or T4 triggered either by an external signal or by a selectable state transition of its toggle
latch T3OTL. When both T2 and T4 are configured to alternately reload T3 on opposite
state transitions of T30OTL with the low and high times of a PWM signal, this signal can
be constantly generated without software intervention.

With its maximum resolution of 2 system clock cycles, the GPT2 block provides precise
event control and time measurement. It includes two timers (T5, T6) and a capture/
reload register (CAPREL). Both timers can be clocked with an input clock which is

User’s Manual 2-20 V1.0, 2007-06
ArchitectureX2K, V1.0

.. XC2000 Derivatives
@'neﬂ System Units (Vol. 1 of 2)

Preliminary Architectural Overview

derived from the CPU clock via a programmable prescaler or with external signals. The
count direction (up/down) for each timer is programmable by software or may
additionally be altered dynamically by an external signal on a port pin (TXEUD).
Concatenation of the timers is supported via the output toggle latch (T6OTL) of timer T6,
which changes its state on each timer overflow/underflow.

The state of this latch may be used to clock timer T5, and/or it may be output on pin
T60OUT. The overflows/underflows of timer T6 can additionally be used to clock the
CAPCOM1/2 timers, and to cause a reload from the CAPREL register.

The CAPREL register may capture the contents of timer T5 based on an external signal
transition on the corresponding port pin (CAPIN), and timer T5 may optionally be cleared
after the capture procedure. This allows the XC2000 to measure absolute time
differences or to perform pulse multiplication without software overhead.

The capture trigger (timer T5 to CAPREL) may also be generated upon transitions of
GPT1 timer T3's inputs T3IN and/or T3EUD. This is especially advantageous when T3
operates in Incremental Interface Mode.

User’s Manual 2-21 V1.0, 2007-06
ArchitectureX2K, V1.0

.. XC2000 Derivatives
@'neﬂ System Units (Vol. 1 of 2)

Preliminary Architectural Overview

Real Time Clock

The Real Time Clock (RTC) module of the XC2000 is directly clocked via a separate
clock driver either with the on-chip auxiliary oscillator frequency (frtc = fosca) Or with the
prescaled on-chip main oscillator frequency (frrc = foscm/32). It is therefore
independent from the selected clock generation mode of the XC2000.

The RTC basically consists of a chain of divider blocks:

» Selectable 32:1 and 8:1 dividers (on - off)
* The reloadable 16-bit timer T14
» The 32-bit RTC timer block (accessible via registers RTCH and RTCL), made of:
— areloadable 10-bit timer
— areloadable 6-bit timer
— areloadable 6-bit timer
— areloadable 10-bit timer

All timers count up. Each timer can generate an interrupt request. All requests are
combined to a common node request.

Note: The registers associated with the RTC are not affected by a functional reset in
order to maintain the contents even when intermediate resets are executed.

The RTC module can be used for different purposes:

» System clock to determine the current time and date

* Cyclic time based interrupt, to provide a system time tick independent of CPU
frequency and other resources

* 48-bit timer for long term measurements

* Alarm interrupt for wake-up on a defined time

User’s Manual 2-22 V1.0, 2007-06
ArchitectureX2K, V1.0

.. XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)

Preliminary Architectural Overview

A/D Converters

For analog signal measurement, two 10-bit A/D converters (ADCO, ADC1) with 16 (or 8)
multiplexed input channels including a sample and hold circuit have been integrated on-
chip. They use the method of successive approximation. The sample time (for loading
the capacitors) and the conversion time are programmable and can thus be adjusted to
the external circuitry. The A/D converters can also operate in 8-bit conversion mode,
where the conversion time is further reduced.

Several independent conversion result registers, selectable interrupt requests, and
highly flexible conversion sequences provide a high degree of programmability to fulfill
the requirements of the respective application. Both modules can be synchronized to
allow parallel sampling of two input channels.

For applications that require more analog input channels, external analog multiplexers
can be controlled automatically.

For applications that require less analog input channels, the remaining channel inputs
can be used as digital input port pins.

The A/D converters of the XC2000 support two types of request sources which can be
triggered by several internal and external events.

» Parallel requests are activated at the same time and then executed in a predefined
sequence.
* Queued requests are executed in a user-defined sequence.

In addition, the conversion of a specific channel can be inserted into a running sequence
without disturbing this sequence. All requests are arbitrated according to the priority level
that has been assigned to them.

Data reduction features, such as limit checking or result accumulation, reduce the
number of required CPU accesses and so allow the precise evaluation of analog inputs
(high conversion rate) even at low CPU speed.

The Peripheral Event Controller (PEC) may be used to control the A/D converters or to
automatically store conversion results into a table in memory for later evaluation, without
requiring the overhead of entering and exiting interrupt routines for each data transfer.
Therefore, each A/D converter contains 8 result registers which can be concatenated to
build a result FIFO. Wait-for-read mode can be enabled for each result register to
prevent loss of conversion data.

In order to decouple analog inputs from digital noise and to avoid input trigger noise
those pins used for analog input can be disconnected from the digital input stages under
software control. This can be selected for each pin separately via registers P5_DIDIS
and P15 _DIDIS (Port x Digital Input Disable).

The Auto-Power-Down feature of the A/D converters minimizes the power consumption
when no conversion is in progress.

Note: The number of available analog channels depends on the selected device type.

User’s Manual 2-23 V1.0, 2007-06
ArchitectureX2K, V1.0

.. XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)

Preliminary Architectural Overview

Universal Serial Interface Channel Modules (USIC)

Each USIC channel can be individually configured to match the application needs, e.g.
the protocol can be selected or changed during run time without the need for a reset. The
following protocols are supported:

» UART (ASC, asynchronous serial channel)
- module capability: receiver/transmitter with max. baud rate fgys/4
- application target baud rate range: 1.2 kBaud to 3.5 MBaud
- number of data bits per data frame 1 to 63
- MSB or LSB first
* LIN Support by HW (low-cost network, baud rate up to 20 kBaud)
- data transfers based on ASC protocol
- baud rate detection possible by built-in capture event of baud rate generator
- checksum generation under SW control for higher flexibility
» SSC/SPI (synchronous serial channel with or without slave select lines)
- module capability: slave mode with max. baud rate fgys
- module capability: master mode with max. baud rate fgy,s /2
- application target baud rate range: 2 kBaud to 10 MBaud
- number of data bits per data frame 1 to 63, more with explicit stop condition
- MSB or LSB first
* [IC (Inter-IC Bus)
- application baud rate 100 kBaud to 400 kBaud
- 7-bit and 10-bit addressing supported
- full master and slave device capability
» [IS (infotainment audio bus)
- module capability: receiver with max. baud rate fgyg
- module capability: transmitter with max. baud rate fgyg /2
- application target baud rate range: up to 26 MBaud

In addition to the flexible choice of the communication protocol, the USIC structure has
been designed to reduce the system load (CPU load) allowing efficient data handling.
The following aspects have been considered:

» Data buffer capability
The standard buffer capability includes a double word buffer for receive data and a
single word buffer for transmit data. This allows longer CPU reaction times (e.g.
interrupt latency).

» Additional FIFO buffer capability
In addition to the standard buffer capability, the received data and the data to be
transmitted can be buffered in a FIFO buffer structure. The size of the receive and the
transmit FIFO buffer can be programmed independently. Depending on the
application needs, a total buffer capability of 64 data words can be assigned to the
receive and transmit FIFO buffers of a USIC module (the two channels of the USIC
module share the 64 data word buffer).

User’s Manual 2-24 V1.0, 2007-06
ArchitectureX2K, V1.0

.. XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)

Preliminary Architectural Overview

In addition to the FIFO buffer, a bypass mechanism allows the introduction of high-
priority data without flushing the FIFO buffer.

» Transmit control information
For each data word to be transmitted, a 5-bit transmit control information has been
added to automatically control some transmission parameters, such as word length,
frame length, or the slave select control for the SPI protocol. The transmit control
information is generated automatically by analyzing the address where the user SW
has written the data word to be transmitted (32 input locations = 275 = 5 bit transmit
control information).
This feature allows individual handling of each data word, e.g. the transmit control
information associated to the data words stored in a transmit FIFO can automatically
modify the slave select outputs to select different communication targets (slave
devices) without CPU load. Alternatively, it can be used to control the frame length.

* Flexible frame length control
The number of bits to be transferred within a data frame is independent of the data
word length and can be handled in two different ways. The first option allows
automatic generation of frames up to 63 bits with a known length. The second option
supports longer frames (even unlimited length) or frames with a dynamically controlled
length.

* Interrupt capability
The events of each USIC channel can be individually routed to one of 4 service
request outputs, depending on the application needs. Furthermore, specific start and
end of frame indications are supported in addition to protocol-specific events.

» Flexible interface routing
Each USIC channel offers the choice between several possible input and output pins
connections for the communications signals. This allows a flexible assignment of
USIC signals to pins that can be changed without resetting the device.

* Input conditioning
Each input signal is handled by a programmable input conditioning stage with
programmable filtering and synchronization capability.

e Baud rate generation
Each USIC channel contains an own baud rate generator. The baud rate generation
can be based either on the internal module clock or on an external frequency input.
This structure allows data transfers with a frequency that can not be generated
internally, e.g. to synchronize several communication partners.

» Transfer trigger capability
In master mode, data transfers can be triggered events generated outside the USIC
module, e.g. at an input pin or a timer unit (transmit data validation). This feature
allows time base related data transmission.

» Debugger support
The USIC offers specific addresses to read out received data without interaction with
the FIFO buffer mechanism. This feature allows debugger accesses without the risk
of a corrupted receive data sequence.

User’s Manual 2-25 V1.0, 2007-06
ArchitectureX2K, V1.0

.. XC2000 Derivatives
@'nm System Units (Vol. 1 of 2)

Preliminary Architectural Overview

To reach a desired baud rate, two criteria have to be respected, the module capability
and the application environment. The module capability is defined with respect to the
module’s input clock frequency fqys, being the base for the module operation. Although
the module’s capability being much higher (depending on the module clock and the
number of module clock cycles needed to represent a data bit), the reachable baud rate
is generally limited by the application environment. In most cases, the application
environment limits the maximum reachable baud rate due to driver delays, signal
propagation times, or due to EMI reasons.

Note: Depending on the selected additional functions (such as digital filters, input
synchronization stages, sample point adjustment, data structure, etc.), the
maximum reachable baud rate can be limited. Please also take care about
additional delays, such as (internal or external) propagation delays and driver
delays (e.qg. for collision detection in ASC mode, for IIC, etc.).

_) .
interrupt generation SR to interrupt
<« registers
pins
fsys UxCO N
baud rate generator < g
[[
N
input €
buff shift (ASC, stages " —
c €77 €] unit [€]ssC,..) S €4
e 2 N
=3 [T
@ =
) f UxC1 S > |
% baud rate generator 1 < %. ——
=T e
data PPP Input
—> —> —> <
data 2 shift 7| (Asc, stages PENG
<1 7 €] unit €] sSC,...) 4 -
N/
—»| optional: FIFO data buffer shared
i between UxCO and UxC1 usSIC
module x USIC_channels
Figure 2-3 Channel Structure
User’s Manual 2-26 V1.0, 2007-06

ArchitectureX2K, V1.0

.. XC2000 Derivatives
@"1% System Units (Vol. 1 of 2)

Preliminary Architectural Overview

The USIC module contains two independent communication channels, with structure
shown in Figure 2-3.

The data shift unit and the data buffering of each channel support full-duplex data
transfers. The protocol-specific actions are handled by protocol pre-processors (PPP).
In order to simplify data handling, an additional FIFO data buffer is optionally available
for each USIC module to store transmit and receive data for each channel. This FIFO
data buffer is not necessarily available in all devices (please refer to USIC
implementation chapter for details).

Due to the independent channel control and baud rate generation, the communication
protocol, baud rate and the data format can be independently programmed for each
communication channel.

User’s Manual 2-27 V1.0, 2007-06
ArchitectureX2K, V1.0

.. XC2000 Derivatives
@'nm System Units (Vol. 1 of 2)

Preliminary Architectural Overview

MultiCAN Module

The MultiCAN module contains five independently operating CAN nodes with Full-CAN
functionality which are able to exchange Data and Remote Frames via a gateway
function. Transmission and reception of CAN frames is handled in accordance with CAN
specification V2.0 B (active). Each CAN node can receive and transmit standard frames
with 11-bit identifiers as well as extended frames with 29-bit identifiers.

Note: The number of available CAN nodes depends on the selected device type.

All CAN nodes share a common set of 128 message objects. Each message object can
be individually allocated to one of the CAN nodes. Besides serving as a storage
container for incoming and outgoing frames, message objects can be combined to build
gateways between the CAN nodes or to setup a FIFO buffer.

The message objects are organized in double-chained linked lists, where each CAN
node has its own list of message objects. A CAN node stores frames only into message
objects that are allocated to its own message object list, and it transmits only messages
belonging to this message object list. A powerful, command-driven list controller
performs all message object list operations.

MultiCAN Module Kernel <{]
TXDC4
CAN P
Clook |t e a | RXOCH >]
Message
Object .
Linked
Address Buffer . .
. List
Decoder Control AN TXDCL | Port
128 rRxpc1 | Control
Objects g Node 1 |« 4—[:]
—P>
CAN TXDCO > O
PN RXDCO
Node 0 ¢ <—O
Interrupt < # # »O
Control CAN Control
mc_mcan_block5.vsd

Figure 2-4 Block Diagram of MultiCAN Module

User’s Manual 2-28 V1.0, 2007-06
ArchitectureX2K, V1.0

.. XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)

Preliminary Architectural Overview

MultiCAN Features

» CAN functionality conforms to CAN specification V2.0 B active for each CAN node
(compliant to ISO 11898)

e Up to Five independent CAN nodes

* Up to 128 independent message objects (shared by the CAN nodes)

» Dedicated control registers for each CAN node

» Data transfer rate up to 1 Mbit/s, individually programmable for each node

» Flexible and powerful message transfer control and error handling capabilities

» Full-CAN functionality for message objects:
— Can be assigned to one of the CAN nodes
— Configurable as transmit or receive objects, or as message buffer FIFO
— Handle 11-bit or 29-bit identifiers with programmable acceptance mask for filtering
— Remote Monitoring Mode, and frame counter for monitoring

» Automatic Gateway Mode support

» 16 individually programmable interrupt nodes

* Analyzer mode for CAN bus monitoring

Watchdog Timer

The Watchdog Timer represents one of the fail-safe mechanisms which have been
implemented to prevent the controller from malfunctioning for longer periods of time.

The Watchdog Timer is always enabled after a reset of the chip, and can be disabled
and enabled at any time by executing instructions DISWDT and ENWDT. Thus, the
chip’s start-up procedure is always monitored. The software has to be designed to restart
the Watchdog Timer before it overflows. If, due to hardware or software related failures,
the software fails to do so, the Watchdog Timer overflows and generates an internal
hardware reset and pulls the RSTOUT pin low in order to allow external hardware
components to be reset.

The Watchdog Timer is a 16-bit timer, clocked with the system clock divided by 16,384
or 256. The high byte of the Watchdog Timer register can be set to a prespecified reload
value (stored in WDTREL) to allow further variation of the monitored time interval. Each
time it is serviced by the application software, the high byte of the Watchdog Timer is
reloaded and the low byte is cleared.

Thus, time intervals between 3.9 us and 16.3 s can be monitored (@ 66 MHz).
The default Watchdog Timer interval after reset is 6.5 ms (@ 10 MHz).

User’s Manual 2-29 V1.0, 2007-06
ArchitectureX2K, V1.0

.. XC2000 Derivatives
@'neﬂ System Units (Vol. 1 of 2)

Preliminary Architectural Overview

Parallel Ports

The XC2000 derivatives are available in two different packages:

* In LQFP-144, they provide up to 118 I/O lines which are organized into 11 input/output
ports and 2 input ports.

* In LQFP-100, they provide up to 75 I/O lines which are organized into 7 input/output
ports and 2 input ports.

All port lines are bit-addressable, and all input/output lines can be individually (bit-wise)
configured via port control registers. This configuration selects the direction (input/
output), push/pull or open-drain operation, activation of pull devices, and edge
characteristics (shape) and driver characteristics (output current) of the port drivers. The
I/O ports are true bidirectional ports which are switched to high impedance state when
configured as inputs. During the internal reset, all port pins are configured as inputs
without pull devices active.

All port lines have programmable alternate input or output functions associated with
them. These alternate fucntions can be assigned to various port pins to support the
optimal utilization for a given application. For this reason, certain functions appear
several times in Table 2-3.

All port lines that are not used for these alternate functions may be used as general
purpose IO lines.

Table 2-3 Summary of the XC2000’s Parallel Ports

Port Width |Width |Alternate Functions
144V | 100V
Port O 8 8 Address lines,

Serial interface lines of USIC1, CANO, and CAN1,
Input/Output lines for CCU61

Port 1 8 8 Address lines,

Serial interface lines of USIC1 and USIC2,
Input/Output lines for CCU62,

OCDS control, interrupts

Port 2 13 13 Address and/or data lines, bus control,

Serial interface lines of USICO, CANO, and CAN1,
Input/Output lines for CCU60, CCU63, and CAPCOM2,
Timer control signals,

JTAG, interrupts, system clock output

Port 3 8 Bus arbitration signals,
Serial interface lines of USICO, USIC2, CAN3, and CAN4

User’s Manual 2-30 V1.0, 2007-06
ArchitectureX2K, V1.0

.. XC2000 Derivatives
@"]Eﬂ System Units (Vol. 1 of 2)

Preliminary Architectural Overview

Table 2-3 Summary of the XC2000’s Parallel Ports (cont’'d)

Port Width |Width |Alternate Functions
1441 | 100V
Port 4 8 4 Chip select signals,

Serial interface lines of CAN2,
Input/Output lines for CAPCOM2,
Timer control signals

Port 5 16 11 Analog input channels to ADCO,
Input/Output lines for CCUBX,
Timer control signals,

JTAG, OCDS control, interrupts

Port 6 4 3 ADC control lines,

Serial interface lines of USIC1,
Timer control signals,

OCDS control

Port 7 5 5 ADC control lines,

Serial interface lines of USICO and CAN4,
Input/Output lines for CCU62,

Timer control signals,

JTAG, OCDS control,system clock output

Port 8 7 Input/Output lines for CCUGO,
JTAG, OCDS control
Port 9 8 Serial interface lines of USIC2,

Input/Output lines for CCU60 and CCUG3,
OCDS control

Port 10 16 16 Address and/or data lines, bus control,

Serial interface lines of USICO, USIC1, CAN2, CAN3, and
CAN4,

Input/Output lines for CCUGO,

JTAG, OCDS control

Port1l |6 Input/Output lines for CCUG3

Port15 |8 5 Analog input channels to ADC1,
Timer control signals

1) These columns describe the availability of port pins in the different packages.

User’s Manual 2-31 V1.0, 2007-06
ArchitectureX2K, V1.0

.. XC2000 Derivatives
@'neﬂ System Units (Vol. 1 of 2)

Preliminary Architectural Overview

2.4 Clock Generation

The Clock Generation Unit uses a programmable on-chip PLL with multiple prescalers
to generate the clock signals for the XC2000 with high flexibility. The master clock fy,c is
the reference clock signal, and is used for TwinCAN and is output to the external system.
The CPU clock fcp, and the system clock fgyg are derived from the master clock either
directly (1:1) or via a 2:1 prescaler (fgys = fcpy = fmc/2).

The on-chip oscillator can drive an external crystal or accepts an external clock signal.
The oscillator clock frequency can be multiplied by the on-chip PLL (by a programmable
factor) or can be divided by a programmable prescaler factor.

If the bypass mode is used (direct drive or prescaler) the PLL can deliver an independent
clock to monitor the clock signal generated by the on-chip oscillator. This PLL clock is
independent from the XTAL1 clock. When the expected oscillator clock transitions are
missing the Oscillator Watchdog (OWD) activates the PLL Unlock/OWD interrupt node
and supplies the CPU with an emergency clock, the PLL clock signal. Under these
circumstances the PLL will oscillate with its basic frequency.

The oscillator watchdog can be disabled by switching the PLL off. This reduces power
consumption, but also no interrupt request will be generated in case of a missing
oscillator clock.

User’s Manual 2-32 V1.0, 2007-06
ArchitectureX2K, V1.0

.. XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)

Preliminary Architectural Overview

2.5 Power Management

The XC2000 provides several means to control the power it consumes either at a given
time or averaged over a certain timespan. Three mechanisms can be used (partly in
parallel):

» Supply Voltage Management allows the temporary reduction of the supply voltage
of major parts of the logic, or even the complete disconnection. This drastically
reduces the power consumed because of leakage current, in particular at high
temperature.

Several power reduction modes provide the optimal balance of power reduction and
wake-up time.

* Clock Generation Management controls the distribution and the frequency of
internal and external clock signals. While the clock signals for currently inactive parts
of logic are disabled automatically, the user can reduce the XC2000’s CPU clock
frequency which drastically reduces the consumed power.

External circuitry can be controlled via the programmable frequency output FOUT.

» Peripheral Management permits temporary disabling of peripheral modules. Each
peripheral can separately be disabled/enabled. Also the CPU can be switched off
while the peripherals can continue to operate.

Wake-up from power reduction modes can be triggered either externally by signals
generated by the external system, or internally by the on-chip wake-up timer, which
supports intermittent operation of the XC2000 by generating cyclic wake-up signals. This
offers full performance to quickly react on action requests while the intermittent sleep
phases greatly reduce the average power consumption of the system.

Note: When selecting the supply voltage and the clock source and generation method,
the required parameters must be carefully written to the respective bitfields, to
avoid unintended intermediate states. Recommended sequences are provided
which ensure the intended operation of power supply system and clock system.

User’s Manual 2-33 V1.0, 2007-06
ArchitectureX2K, V1.0

.. XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)

Preliminary Architectural Overview

2.6 On-Chip Debug Support (OCDS)

The On-Chip Debug Support system provides a broad range of debug and emulation
features built into the XC2000. The user software running on the XC2000 can thus be
debugged within the target system environment.

The OCDS is controlled by an external debugging device via the debug interface,
consisting of the IEEE-1149-conforming JTAG port and a break interface. The debugger
controls the OCDS via a set of dedicated registers accessible via the JTAG interface.
Additionally, the OCDS system can be controlled by the CPU, e.g. by a monitor program.
An injection interface allows the execution of OCDS-generated instructions by the CPU.

Multiple breakpoints can be triggered by on-chip hardware, by software, or by an
external trigger input. Single stepping is supported as well as the injection of arbitrary
instructions and read/write access to the complete internal address space. A breakpoint
trigger can be answered with a CPU-halt, a monitor call, a data transfer, or/and the
activation of an external signal.

The data transferred at a watchpoint (see above) can be obtained via the JTAG interface
or via the external bus interface for increased performance.

The debug interface uses a set of 6 interface signals (4 JTAG lines, 2 break lines) to
communicate with external circuitry. These interface signals use dedicated pins.

Complete system emulation is supported by an emulation device. Via this full-featured
emulation interface (including internal buses, control, status, and pad signals) the
functions of the XC2000 chip can be emulated in an emulation system.

User’s Manual 2-34 V1.0, 2007-06
ArchitectureX2K, V1.0

@fineon
-

XC2000 Derivatives
System Units (Vol. 1 of 2)

Preliminary

3 Memory Organization

The memory space of the XC2000 is configured in a “Von Neumann” architecture. This
means that code and data are accessed within the same linear address space. All of the
physically separated memory areas, including internal ROM and Flash, internal RAM,
the internal Special Function Register Areas (SFRs and ESFRS), the internal 1O area,
and external memory are mapped into one common address space.

Memory Organization

On-Chip
Program Memory
Areas

~12 Mbytes

External
Memory
Area

External Addressing Capability

External
10
Area

External
Memory
Area

255...240

239...224

223...208

207...192

191...176

175...160

159...144

143...128

127...112

111...96

95...80

79...64

63...48

47...32

31...16

15..0

Total Address Space

FFFFFF,

EO’OOOOH

CO'OOOOH
AO'OOOOH
80’0000H
60’0000H
40’0000H

20°0000,

0070000,

16 Mbytes, Segments 255...0

16 Mbytes
Total Addressing Capability

v

mc_xc16x_mmap.vsd

Figure 3-1

User’s Manual
MemoryX2K, V1.1

Address Space Overview

3-1

V1.0, 2007-06

.. XC2000 Derivatives
@'neﬂ System Units (Vol. 1 of 2)

Preliminary Memory Organization

The XC2000 provides a total addressable memory space of 16 Mbytes. This address
space is arranged as 256 segments of 64 Kbytes each, and each segment is again
subdivided into four data pages of 16 Kbytes each (see Figure 3-1).

Bytes are stored at even or odd byte addresses. Words are stored in ascending memory
locations with the low byte at an even byte address being followed by the high byte at
the next odd byte address (“little endian”). Double words (code only) are stored in
ascending memory locations as two subsequent words. Single bits are always stored in
the specified bit position at a word address. Bit position O is the least significant bit of the
byte at an even byte address, and bit position 15 is the most significant bit of the byte at
the next odd byte address. Bit addressing is supported for a part of the Special Function
Registers, a part of the internal RAM and for the General Purpose Registers.

/\/ XXXX'XXXA,

XXXX'XXX9,

716 ... Bits ... 0| XXXX'XXX8,

Byte XXXX'XXX T,

Byte XXXX'XXXQ,

Word (High Byte) XXXX'XXXY,

Word (Low Byte) XXXX'XXX4,

Double Word (High Byte) XXXX'XXX3,

Double Word (Third Byte) XXXX'XXX2,

Double Word (Second Byte) XXXX'XXX1,

Double Word (Low Byte) XXXX'XXXQ,

/\/ XXXX'XXXF,
imb_endianessysdbyte_orga

Figure 3-2 Storage of Words, Bytes and Bits in a Byte Organized Memory

Note: Byte units forming a single word or a double word must always be stored within
the same physical (internal, external, ROM, RAM) and organizational (page,
segment) memory area.

User’s Manual 3-2 V1.0, 2007-06
MemoryX2K, V1.1

@ineon
-

XC2000 Derivatives
System Units (Vol. 1 of 2)

Preliminary

3.1

Address Mapping

Memory Organization

All the various memory areas and peripheral registers (see Table 3-1) are mapped into
one contiguous address space. All sections can be accessed in the same way. The
memory map of the XC2000 contains some reserved areas, so future derivatives can be
enhanced in an upward-compatible fashion.

Table 3-1 XC2000 Memory Map

Address Area Start Loc. |[End Loc. |Area Size? | Notes

IMB register space FF'FFOOy | FF'FFFFy | 256 Bytes

Reserved (access trap) | FO'0000y |FF'FEFF | <1 MByte Minus IMB registers.

Reserved for EPSRAM | E9'0000 |EF'FFFFy | 448 KBytes

EPSRAM E80000y |E8'FFFFy |64 KBytes PSRAM with Flash
timing.

Reserved for PSRAM E1'00004 |E7'FFFFy | 448 KBytes

PSRAM E0’'0000, | EO'FFFF, |64 KBytes Program SRAM.

Reserved for Flash CC’0000y |DFFFFFy | <1.25 MBytes

Flash 2 C80000y |CB'FFFFy | 256 KBytes

Flash 1 C4'0000y |C7'FFFFy | 256 KBytes

Flash O C0’0000y |C3'FFFFy | 252 KBytes®) | Minus res. seg.

External memory area | 40'0000y |BFFFFF, |8 MBytes

External 10 area® 20’5800y |3F'FFFFy | <2 MBytes Minus CAN/USIC

USIC registers 20’4000y |20'57FF, |6 KBytes Accessed via EBC

MultiCAN registers 20’0000y |20'3FFFy |16 KBytes Accessed via EBC

External memory area | 01’0000y |1F'FFFFy |<2 MBytes | Minus segment O

SFR area O0O'FEOOy |O00’FFFFy | 0.5 KBytes

Dual-port RAM 00’F600y |O00’FDFFy | 2 KBytes

(DPRAM)

Reserved for DPRAM 00'F2004 |OO'F5FFy |1 KBytes

ESFR area 00’FO00y |O00'F1FFy | 0.5 KBytes

XSFR area O00’EO00y |OO’EFFFy |4 KBytes

Data SRAM (DSRAM) |00’A000y |OO0'DFFFy |16 KBytes

Reserved for DSRAM 00’8000y |00'9FFFy |8 KBytes

External memory area | 00’0000y |O00’'7FFFy |32 KBytes

User’s Manual 3-3 V1.0, 2007-06

MemoryX2K, V1.1

.. XC2000 Derivatives
@"1% System Units (Vol. 1 of 2)

Preliminary Memory Organization

1) Accesses to the shaded areas are reserved. In devices with external bus interface these accesses generate
external bus accesses.

The areas marked with “<” are slightly smaller than indicated, see column “Notes”.

3) The 4 KB sector from CO’FO00y to CO’FFFFy is not accessible to the software.

Several pipeline optimizations are not active within the external 10 area. This is hecessary to control external
peripherals properly.

3.2 Special Function Register Areas

The Special Function Registers (SFRs) controlling the system and peripheral functions
of the XC2000 can be accessed via four dedicated address areas:

» 512-byte SFR area (located above the internal RAM: 00'FFFF ... 00’FEOQO).
» 512-byte ESFR area (located below the internal RAM: 00'F1FF, ... 00’FO00).
» 4-Kbytes XSFR area (located below the ESFR area: 00’EFFF ... 00'EO00).
* 256-byte IMB SFR area (located in: FF'FFOOy ... FF’FFFFH)l).

This arrangement provides upward compatibility with the derivatives of the C166 and
XC166 families.

1) Attention: the IMB SFR area is not recognized by the CPU as special IO area (see Section 3.6).

User’s Manual 34 V1.0, 2007-06
MemoryX2K, V1.1

.. XC2000 Derivatives
@'neﬂ System Units (Vol. 1 of 2)

Preliminary Memory Organization
[15]
2 P
< A
=4+ Vi FRs
s 00'FE00y
00'FCO00,,
DPRAM 00'FA00H
00'F800y
00'F600y
Reserved for 00F400, ®
B DPRAM &
] . o
S 00'F200y ol
0: " //////////// I:or‘r\g //////////// ' g‘ D
L 00F000. &| %
W EBC 5| =
00'EE00y £
InterruptPEC ©
00'EC004 oy
CC6 -
© 00'EA00y
£ Ports
¥ 00'E800,,
& Reserved
X 00'E600y
Reserved
00'E400y
Reserved
00'E200y
ADC
\ 4 00'E000,; —Y—
xc2000 regareas.vsd

Figure 3-3 Special Function Register Mapping

Note: The upper 256 bytes of SFR area, ESFR area, and internal RAM are bit-
addressable (see hashed blocks in Figure 3-3).

Special Function Registers

The functions of the CPU, the bus interface, the 10 ports, and the on-chip peripherals of
the XC2000 are controlled via a number of Special Function Registers (SFRS).

All Special Function Registers can be addressed via indirect and long 16-bit addressing
modes. The (word) SFRs and their respective low bytes in the SFR/ESFR areas can be
addressed using an 8-bit offset together with an implicit base address. However, this
does not work for the respective high bytes!

Note: Writing to any byte of an SFR causes the not addressed complementary byte to
be cleared.

User’s Manual 3-5 V1.0, 2007-06
MemoryX2K, V1.1

.. XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)

Preliminary Memory Organization

The upper half of the SFR-area (O0'FFFF ... 00'FF004) and the ESFR-area (00'F1FFy
... 00'F100y) is bit-addressable, so the respective control/status bits can be modified
directly or checked using bit addressing.

When accessing registers in the ESFR area using 8-bit addresses or direct bit
addressing, an Extend Register (EXTR) instruction is required beforehand to switch the
short addressing mechanism from the standard SFR area to the Extended SFR area.
This is not required for 16-bit and indirect addresses. The GPRs R15 ... RO are
duplicated, i.e. they are accessible within both register blocks via short 2-, 4-, or 8-bit
addresses without switching.

ESFR_SW TCH_EXAMPLE:

EXTR #4 ;SwWitch to ESFR area for next 4 instr.
MOV CODP9, #datal6 ; ODP9 uses 8-bit reg addressing

BFLDL DP9, #mask, #data8 ;Bit addressing for bitfields

BSET DP1H.7 ;Bit addressing for single bits

MOV T8REL, R1 ; TBREL uses 16-bit nmem address,

;RL is duplicated into the ESFR space
;(EXTR is not required for this access)
R ; The scope of the EXTR #4 instruction ...
; ...ends herel!
MOV T8REL, R1 ; TBREL uses 16-bit nmem address,
;RL is accessed via the SFR space

In order to minimize the use of the EXTR instructions the ESFR area mostly holds
registers which are mainly required for initialization and mode selection. Registers that
need to be accessed frequently are allocated to the standard SFR area, wherever
possible.

Note: The tools are equipped to monitor accesses to the ESFR area and will
automatically insert EXTR instructions, or issue a warning in case of missing or
excessive EXTR instructions.

Accesses to registers in the XSFR area use 16-bit addresses and require no specific
addressing modes or precautions.

General Purpose Registers

The General Purpose Registers (GPRs) use a block of 16 consecutive words either
within the global register bank or within one of the two local register banks. The bit-field
BANK in register PSW selects the currently active register bank. The global register bank
Is mirrored to a section in the DPRAM, the Context Pointer (CP) register determines the
base address of the currently active global register bank section. This register bank may
consist of up to 16 Word-GPRs (RO, R1, ... R15) and/or of up to 16 byte-GPRs
(RLO,RHQO, ... RL7, RH7). The sixteen byte-GPRs are mapped onto the first eight Word
GPRs (see Table 3-2).

User’s Manual 3-6 V1.0, 2007-06
MemoryX2K, V1.1

.. XC2000 Derivatives
@"1% System Units (Vol. 1 of 2)

Preliminary Memory Organization

In contrast to the system stack, a register bank grows from lower towards higher address
locations and occupies a maximum space of 32 bytes. The GPRs are accessed via short
2-, 4-, or 8-bit addressing modes using the Context Pointer (CP) register as base
address for the global bank (independent of the current DPP register contents).
Additionally, each bit in the currently active register bank can be accessed individually.

Table 3-2 Mapping of General Purpose Registers to DPRAM Addresses

DPRAM Address | High Byte Registers | Low Byte Registers | Word Registers
<CP> + 1Ey - - R15
<CP> + 1Cq - - R14
<CP> + 1Ay - - R13
<CP> + 18y - - R12
<CP> + 16 - — R11
<CP> + 14y -~ -~ R10
<CP> + 12 - - R9
<CP> + 10y - - R8
<CP> + OEy RH7 RL7 R7
<CP> + 0Cq RH6 RL6 R6
<CP> + OAy RH5 RL5 RS
<CP> + 08y RH4 RL4 R4
<CP> + 06y RH3 RL3 R3
<CP> + 04y RH2 RL2 R2
<CP> + 02y RH1 RL1 R1
<CP> + 00y RHO RLO RO

The XC2000 supports fast register bank (context) switching. Multiple global register
banks can physically exist within the DPRAM at the same time. Only the global register
bank selected by the Context Pointer register (CP) is active at a given time, however.
Selecting a new active global register bank is simply done by updating the CP register.
A particular Switch Context (SCXT) instruction performs register bank switching by
automatically saving the previous context and loading the new context. The number of
implemented register banks (arbitrary sizes) is limited only by the size of the available
DPRAM.

Note: The local GPR banks are not memory mapped and the GPRs cannot be accessed
using a long or indirect memory address.

User’s Manual 3-7 V1.0, 2007-06
MemoryX2K, V1.1

.. XC2000 Derivatives
@'neﬂ System Units (Vol. 1 of 2)

Preliminary Memory Organization

PEC Source and Destination Pointers

The source and destination address pointers for data transfers on the PEC channels are
located in the XSFR area.

Each channel uses a pair of pointers stored in two subsequent word locations with the
source pointer (SRCPx) on the lower and the destination pointer (DSTPXx) on the higher
word address (x = 7 ... 0). An additional segment register stores the associated source
and destination segments, so PEC transfers can move data from/to any location within
the complete addressing range.

Whenever a PEC data transfer is performed, the pair of source and destination pointers
(selected by the specified PEC channel number) accesses the locations referred to by
these pointers independently of the current DPP register contents.

If a PEC channel is not used, the corresponding pointer locations can be used for other
purposes.

For more details about the use of the source and destination pointers for PEC data
transfers see Section XXX in Interrupt And Trap “Operation of PEC Channels”.

Note: Writing to any byte of the PEC pointers causes the not addressed complementary
byte to be cleared.

User’s Manual 3-8 V1.0, 2007-06
MemoryX2K, V1.1

.. XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)

Preliminary Memory Organization

3.3 Data Memory Areas

The XC2000 provides two on-chip RAM areas exclusively for data storage:

e The Dual Port RAM (DPRAM) can be used for global register banks (GPRS), system
stack, storage of variables and other data, in particular for MAC operands.

e The Data SRAM (DSRAM) can be used for system stack (recommended), storage
of variables and other data.

Note: Data can also be stored in the PSRAM (see Section 3.10). However, both data
memory areas provide the fastest access.

Two additional on-chip memory areas exist with the special purpose to retain data while
the system power domain is switched off:

* The Stand-By RAM (SBRAM).
* The Marker Memory (MKMEM).

Dual-Port RAM (DPRAM)

The XC2000 provides 2 Kbytes of DPRAM (00'F6004 ... O0’FDFFy). Any word or byte
data in the DPRAM can be accessed via indirect or long 16-bit addressing modes, if the
selected DPP register points to data page 3. Any word data access is made on an even
byte address. The highest possible word data storage location in the DPRAM s
00'FDFEy,.

For PEC data transfers, the DPRAM can be accessed independent of the contents of the
DPP registers via the PEC source and destination pointers.

The upper 256 bytes of the DPRAM (00'FDO0y through O0’FDFF) are provided for
single bit storage, and thus they are bit addressable.

Note: Code cannot be executed out of the DPRAM.

An area of 3 Kbytes is dedicated to DPRAM (00'F2004 ... 00'FDFF). The locations
without implemented DPRAM are reserved.

Data SRAM (DSRAM)

The XC2000 provides 16 Kbytes of DSRAM (00’A000y ... 00'CFFFy). Any word or byte
data in the DSRAM can be accessed via indirect or long 16-bit addressing modes, if the
selected DPP register points to data page 3. Any word data access is made on an even
byte address. The highest possible word data storage location in the DSRAM s
00’CFFE.

For PEC data transfers, the DSRAM can be accessed independent of the contents of the
DPP registers via the PEC source and destination pointers.

Note: Code cannot be executed out of the DSRAM.

An area of 20 Kbytes is dedicated to DSRAM (00’8000 ... 00'CFFFy). The location
without implemented DSRAM are reserved.

User’s Manual 3-9 V1.0, 2007-06
MemoryX2K, V1.1

.. XC2000 Derivatives
@'neﬂ System Units (Vol. 1 of 2)

Preliminary Memory Organization

Stand-By RAM (SBRAM)

The SBRAM provides 1 Kbyte of memory supplied by the wake-up power domain
(DMP_M). Its main purpose is to retain state while the system power domain (DMP_1)
Is switched off.

Unlike the other memories the SBRAM is not mapped into the address range of the
processor. Reading and writing is done via two address and two data SFRs. Details of
the access mechanism are described in Section 3.11.

Note: Code cannot be executed out of the SBRAM.

Marker Memory (MKMEM)

The MKMEM provides 4 bytes of memory supplied by the wake-up power domain. Its
purpose is the same as the SBRAM.

The MKEM consists of 2 16-bit SFRs that are accessible as all other SFRs. Details are
described in Section 3.11.

Note: It goes without saying that code cannot be executed out of the MKMEM.

User’s Manual 3-10 V1.0, 2007-06
MemoryX2K, V1.1

XC2000 Derivatives
System Units (Vol. 1 of 2)

@ineon
-

Preliminary

Memory Organization

3.4

The XC2000 provides two on-chip program memory areas for code/data storage:

e« The Program Flash/ROM stores code and constant data. Flash memory is (re-)
programmed by the application software or flash loaders, ROM is mask-programmed
in the factory.

 The Program SRAM (PSRAM) stores temporary code sequences and other data.
For example higher level boot loader software can be written to the PSRAM and then
be executed to program the on-chip Flash memory.

Program Memory Areas

FFFFFF
g IMBReg.Irprrgp |
, , P4 H
P H
FFFO0 |,
Reserved
Reserved
_ - F0'0000,,
gB000, Vs
Reserved N L AN
Rlaly E9'0000
=aoo00. | PSRAM (64 KB) H
Reserved -~ \H Flash Access
PSRAM ~ Timing E80000,,
WCEOH — N
L ANNN
AV
N\ E1'0000,,
Reserved \ PSRAM (64 KB)
Flash Area N\ [srRAM Timing
E0'0000,,
e = — — — < D0'0000,,
T U NN
~ AN
Flash 2 (256 KB) _ c40000,
Flash 1 (256 KB) | "
Flash 0 (252 KB) Flash 0 (192 KB)
C0'0000,,
No software access
~ NNV S N\ Reserved (4 KB) Cé'FOOO to this Flash range.
\ H
| Flasho©okB)
C0'0000y,
T— UL

imb_memory_map.vsd

Figure 3-4 On-Chip Program Memory Mapping

User’s Manual 3-11

MemoryX2K, V1.1

V1.0, 2007-06

.. XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)

Preliminary Memory Organization

3.4.1 Program/Data SRAM (PSRAM)

The XC2000 provides 64 Kbytes of PSRAM (E0'0000y ... EO'FFFFy). The PSRAM
provides fast code execution without initial delays. Therefore, it supports non-sequential
code execution, for example via the interrupt vector table.

Any word or byte data in the PSRAM can be accessed via indirect or long 16-bit
addressing modes, if the selected DPP register points to one of its data page 896 — 899.
Any word data access is made on an even byte address. The highest possible word data
storage location in the PSRAM is EO'FFFE.

For PEC data transfers, the PSRAM can be accessed independent of the contents of the
DPP registers via the PEC source and destination pointers.

Any data can be stored in the PSRAM. Because the PSRAM is optimized for code
fetches, however, data accesses to the data memories provide higher performance.

Note: The PSRAM is not bit-addressable.

An area of 512 Kbytes is dedicated to PSRAM (E0’0000y ... F7'FFFFy). The locations
without implemented PSRAM are reserved.

Flash Emulation

During code development the PSRAM will often be used for storing code or data that the
production chip will later contain in the flash memory. In order to ensure similar execution
time the PSRAM supports a second access path in the range E8'0000y ... EF'FFFFy
with timing parameters that correspond to Flash timing. The number of wait-cycles is
determined by the flash access timing configuration (see IMB_IMBCTRL.WSFLASH).
Writes are always performed without wait-cycles.

This flash access timing imitation is nearly cycle accurate because the same read logic
as for reading the flash memory is used?). Discrepancies might occur if the software uses
the PSRAM for flash emulation and directly as PSRAM. During emulation access
conflicts can cause a slightly different timing as in the product chip where these conflicts
do not occur.

Another source of timing differences can be access conflicts at the flash modules in the
product chip. Data reads and instruction fetches that target different flash modules can
be executed concurrently whereas if they target the same flash module they are
executed sequentially with the data access as first. In the flash emulation this type of
conflict can not occur. The data and the instruction access will both incur the defined
number of wait-cycles (as if they would target different flash modules) and if they collide
at the PSRAM interface the instruction fetch will see an additional wait-cycle.

1" The dual use of the flash read logic might cause unexpected behavior: while the IMB Core is busy with
updating the protection configuration (after startup or after changing the security pages) read accesses to the
flash emulation range of the PSRAM are blocked because Flash data reads would be blocked also.

User’s Manual 3-12 V1.0, 2007-06
MemoryX2K, V1.1

.. XC2000 Derivatives
@'neﬂ System Units (Vol. 1 of 2)

Preliminary Memory Organization

Data Integrity

The PSRAM contains its own parity generation and comparison logic. It generates the
parity bits for every written byte. When reading data it checks the data integrity by
comparing the read parity bits with calculated parity bits.

If enabled parity errors can trigger a trap (see “Memory Parity Error Handling” on
Page 3-77).

Write Protection

As the PSRAM is often used to store timing critical code or constant data it is supplied
with a write protection. After storing critical data in the PSRAM the register field
IMB_IMBCTRH.PSPROT can be used to split the PSRAM into a read-only and a
writable part. Write accesses to the read-only part are blocked and a trap can be
activated.

3.4.2 Non-Volatile Program Memory (Flash)
The XC2000 provides 764 Kbytes of program Flash (C0’0000y ... CB’FFFFy). Code and
data fetches are always 64-bit aligned, using byte select lines for word and byte data.

Any word or byte data in the program memory can be accessed via indirect or long 16-
bit addressing modes, if the selected DPP register points to one of the respective data
pages. Any word data access is made on an even byte address. The highest possible
word data storage location in the program memory is CB’FFFE.

For PEC data transfers, the program memory can be accessed independent of the
contents of the DPP registers via the PEC source and destination pointers.

Note: The program memory is not bit-addressable.
An area of 2 Mbytes is dedicated to program memory (C0’00004 ... DF'FFFF). The
locations without implemented program memory are reserved.

A more detailed description can be found in “Embedded Flash Memory” on
Page 3-18.

User’s Manual 3-13 V1.0, 2007-06
MemoryX2K, V1.1

.. XC2000 Derivatives
@'neﬂ System Units (Vol. 1 of 2)

Preliminary Memory Organization

3.5 System Stack

The system stack may be defined anywhere within the XC2000's memory areas
(including external memory).

For all system stack operations the respective stack memory is accessed via a 24-bit
stack pointer. The Stack Pointer (SP) register provides the lower 16 bits of the stack
pointer (stack pointer offset), the Stack Pointer Segment (SPSEG) register adds the
upper 8 bits of the stack pointer (stack segment). The system stack grows downward
from higher towards lower locations as it is filled. Only word accesses are supported to
the system stack.

Register SP is decremented before data is pushed on the system stack, and
incremented after data has been pulled from the system stack. Only word accesses are
supported to the system stack.

By using register SP for stack operations, the size of the system stack is limited to
64 KBytes. The stack must be located in the segment defined by register SPSEG.

The stack pointer points to the latest system stack entry, rather than to the next available
system stack address.

A stack overflow (STKOV) register and a stack underflow (STKUN) register are provided
to control the lower and upper limits of the selected stack area. These two stack
boundary registers can be used both for protection against data corruption.

For best performance it is recommended to locate the stack to the DPRAM or to the
DSRAM. Using the DPRAM may conflict with register banks or MAC operands.

User’s Manual 3-14 V1.0, 2007-06
MemoryX2K, V1.1

S XC2000 Derivatives
@'neﬂ System Units (Vol. 1 of 2)
Preliminary Memory Organization

3.6 IO Areas

The following areas of the XC2000's address space are marked as IO area:

 The external IO area is provided for external peripherals (or memories) and also
comprises the on-chip LXBus-peripherals, such as the CAN or USIC modules. It is
located from 20’0000y to 3F’'FFFFy (2 Mbytes).

* Theinternal 10 area provides access to the internal peripherals and is split into three
blocks:

The SFR area, located from 00’FEOOy to O0'FFFFy (512 bytes).

The ESFR area, located from 00’FO00y to O0'F1FFy (512 bytes).

The XSFR area, located from 00’EO004 to 00'EFFFy (4 Kbytes).

Note: The external 10 area supports real byte accesses. The internal 10 area does not
support real byte transfers, the complementary byte is cleared when writing to a
byte location.

The 10 areas have special properties, because peripheral modules must be controlled
in a different way than memories:

» Accesses are not buffered and cached, the write back buffers and caches are not
used to store 10 read and write accesses.

e Speculative reads are not executed, but delayed until all speculations are solved (e.g.
pre-fetching after conditional branches).

» Data forwarding is disabled, an 10 read access is delayed until all IO writes pending
in the pipeline are executed, because peripherals can change their internal state after
a write access.

User’s Manual 3-15 V1.0, 2007-06
MemoryX2K, V1.1

.. XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)

Preliminary Memory Organization

3.7 External Memory Space

The XC2000 is capable of using an address space of up to 16 Mbytes. Only parts of this
address space are occupied by internal memory areas or are reserved. A total area of
approximately 12 Mbytes references external memory locations. This external memory
Is accessed via the XC2000's external bus interface.

Selectable memory bank sizes are supported: The maximum size of a bank in the
external memory space depends on the number of activated address bits. It can vary
from 64 Kbytes (with A15 ... AO activated) to 12 Mbytes (with A23 ... AO activated). The
logical size of a memory bank and its location in the address space is defined by
programming the respective address window. It can vary from 4 Kbytes to 12 Mbytes.

* Non-segmented mode:

— 64 Kbytes with A15 ... AO on PORTO or PORTL1.
* 1-bit segmented mode:

— 128 Kbytes with A16 on Port 4

— and A15 ... AO on PORTO or PORTL1.
e 2-bit ... 7-bit segmented mode:

— with Ax ... A16 on Port 4

— and A15 ... AO on PORTO or PORTL1.
* 8-bit segmented mode:

— 12 Mbytes with A23 ... A16 on Port 4

— and A15 ... AO on PORTO or PORT1.

Each bank can be directly addressed via the address bus, while the programmable chip
select signals can be used to select various memory banks.

The XC2000 also supports four different bus types:

* Multiplexed 16-bit Bus with address and data on PORTO (default after Reset).
* Multiplexed 8-bit Bus with address and data on PORTO/POL.

» Demultiplexed 16-bit Bus with address on PORT1 and data on PORTO.

» Demultiplexed 8-bit Bus with address on PORT1 and data on POL.

Memory model and bus mode are preselected during reset by pin EA and PORTO pins.
For further details about the external bus configuration and control please refer to
Chapter XX (The External Bus Controller).

External word and byte data can only be accessed via indirect or long 16-bit addressing
modes using one of the four DPP registers. There is no short addressing mode for
external operands. Any word data access is made to an even byte address.

For PEC data transfers the external memory can be accessed independent of the
contents of the DPP registers via the PEC source and destination pointers.

Note: The external memory is not bit addressable.

User’s Manual 3-16 V1.0, 2007-06
MemoryX2K, V1.1

.. XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)

Preliminary Memory Organization

3.8 Crossing Memory Boundaries

The address space of the XC2000 is implicitly divided into equally sized blocks of
different granularity and into logical memory areas. Crossing the boundaries between
these blocks (code or data) or areas requires special attention to ensure that the
controller executes the desired operations.

Memory Areas are partitions of the address space assigned to different kinds of
memory (if provided at all). These memory areas are the SFR areas, the on-chip
program or data RAM areas, the on-chip ROM/Flash (if available), the on-chip LXBus-
peripherals (if integrated), and the external memory.

Accessing subsequent data locations which belong to different memory areas is no
problem. However, when executing code, the different memory areas must be switched
explicitly via branch instructions. Sequential boundary crossing is not supported and
leads to erroneous results.

Note: Changing from the external memory area to the on-chip RAM area takes place
within segment 0.

Segments are contiguous blocks of 64 Kbytes each. They are referenced via the Code
Segment Pointer CSP for code fetches and via an explicit segment number for data
accesses overriding the standard DPP scheme.

During code fetching, segments are not changed automatically, but rather must be
switched explicitly. The instructions JMPS, CALLS and RETS will do this.

In larger sequential programs, make sure that the highest used code location of a
segment contains an unconditional branch instruction to the respective following
segment to prevent the pre-fetcher from trying to leave the current segment.

Data Pages are contiguous blocks of 16 Kbytes each. They are referenced via the data
page pointers DPP3 ... DPPO and via an explicit data page number for data accesses
overriding the standard DPP scheme. Each DPP register can select one of the possible
1024 data pages. The DPP register which is used for the current access is selected via
the two upper bits of the 16-bit data address. Therefore, subsequent 16-bit data
addresses which cross the 16-Kbytes data page boundaries will use different data page
pointers, while the physical locations need not be subsequent within memory.

User’s Manual 3-17 V1.0, 2007-06
MemoryX2K, V1.1

.. XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)

Preliminary Memory Organization

3.9 Embedded Flash Memory

This chapter describes the embedded flash memory of the XC2000:

» Section 3.9.1 defines the flash specific nomenclature and the structure of the flash
memory.

e Section 3.9.2 describes the operating modes.

» Section 3.9.3 contains all operations.

» Section 3.9.4 gives the details of operating sequences.

* The three sections Section 3.9.5, Section 3.9.6 and Section 3.9.7 look more into
depth of maintaining data integrity and protection issues.

» Section 3.9.8 discusses Flash EEPROM emulation.

» Section 3.9.9 describes interrupt generation by the flash memory.

The Chapter 3.10 describes how the flash memory is embedded into the memory
architecture of the XC2000 and lists all SFRs that affect its behavior.

3.9.1 Definitions

This section defines the nomenclature and some abbreviations as a base for the rest of
the document. The used flash memory is a non-volatile memory (“NVM”) based on a
floating gate one-transistor cell. It is called “non-volatile” because the memory content is
kept when the memory power supply is shut off.

Logical and Physical States

Flash memory content can not be changed directly as in SRAMs. Changing data is a
complicated process with a typically much longer duration than reading.

» FErasing: The erased state of a cell is logical 0. Forcing an flash cell to this state is
called “erasing”. Erasing is possible with a minimum granularity of one page (see
below).

 Programming: The programmed state of a cell is logical 1. Changing an erased cell
to this state is called “programming”. A page must only be programmed once and has
to be erased before it can be programmed again.

The above listed processes have certain limitations:

* Retention: This is the time during which the data of a flash cell can be read reliably.
The retention time is a statistical figure that depends on the operating conditions of
the flash array (temperature profile) and the accesses to the flash array. With an
increasing number of program/erase cycles (see endurance) the retention is lowered.
Drain and gate disturbs decrease data retention as well.

« Endurance: As described above the data retention is reduced with an increasing
number of program/erase cycles. A flash cell incurs one cycle whenever its page or
sector is erased. This number is called “endurance”. As said for the retention it is a
statistical figure that depends on operating conditions and the use of the flash cells
and not to forget on the required quality level.

User’s Manual 3-18 V1.0, 2007-06
MemoryX2K, V1.1

.. XC2000 Derivatives
@'neﬂ System Units (Vol. 1 of 2)

Preliminary Memory Organization

Drain Disturb: Because of using a so called “one-transistor” flash cell each program
access disturbs all pages of the same sector slightly. Over long these “drain disturbs”
make 0 and 1 values indistinguishable and thus provoke read errors. This effect is
again interrelated with the retention. A cell that incurred a high number of drain
disturbs will have a lower retention. The physical sectors of the flash array are
isolated from each other. So pages of a different sector do not incur a drain disturb.
This effect must be therefor considered when the page erase feature is used.

The durations of programming and erasing as well as the limits for endurance, retention
and drain disturbs are documented in the data sheet.

Attention: No means exist in the device that prevent the application from violating

these limitation.

Array Structure

The flash memory is hierarchically structured:

Block: A block consists of 128 user data bits (i.e. 16 bytes) and 9 ECC bits. One read
access delivers one block.

Page: A page consists of 8 blocks (i.e. 128 bytes). Programming changes always
complete pages.

Sector: A sector consists of 32 pages (i.e. 4096 bytes). The pages of one sector are
affected by drain disturb as described above. The pages of different sectors are
isolated from each other.

Array: Each array has in the XC2000 64 sectors?. Usually when referring to an
“array” this contains as well all accompanying logic as assembly buffer, high voltage
logic and the digital logic that allows to operate them in parallel.

Memory: The complete flash memory of the XC2000 consists of 3 flash arrays.

This structure is visualized in Figure 3-5.

1

In the FlashO one sector is reserved for device internal purposes. It is not accessible by software.

User’s Manual 3-19 V1.0, 2007-06
MemoryX2K, V1.1

@ineon
-

XC2000 Derivatives
System Units (Vol. 1 of 2)

Preliminary Memory Organization
256 KB
Sector Array
Number
63
Page Sector
Number Page
3 ,l Block 9
Number
/ 7
/ / :
/ ' / .
2 ,/ 2 / 2
1 1 / 1
0 Sector 0 Page 0 Block
137 Bits
Combined flash memory byte address s —
Array Sector Page Block Byte . .
[1:0] (5:0] [4:0] [2:0] [3:0] 9 Bits ECC 128 Bits Data
flash_amay_userview_diagram.vsd
Figure 3-5 Flash Structure

3.9.2

The IMB and the flash memory and each flash module have certain modes of operation.
Some modes define clocking and power supply and the operating state of the analog
logic as oscillators and voltage pumps. Overall system modes (e.g. startup mode)
influence the behavior or the flash memory as well.

Operating Modes

Other modes define the functional behavior. These will be discussed here.

3.9.2.1 Standard Read Mode

After reset and after performing a clean startup the flash memory with all its modules is
in “standard read mode”. In this mode it behaves as an on-chip ROM. This mode is
entered:

» After reset when the complete start-up has been performed.

» After completion of a longer lasting command like “erase” or “program” which is
acknowledged by clearing the “busy” flag.

* Immediately after each other command execution.

User’s Manual 3-20
MemoryX2K, V1.1

V1.0, 2007-06

.. XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)

Preliminary Memory Organization

* In case of detecting an execution error like attempting to write to a write protected
range, sending a wrong password, after all sequence errors.

For the long lasting commands the read mode stays active until the last command of the
sequence is received and the operation is started.

3.9.2.2 Command Mode

After receiving the last command of a command sequence the addressed flash module
(not the whole flash memory!) is placed into command mode. For most commands this
will not be noticed by the user as the command executes immediately and afterwards the
flash module is placed again into read mode. For the long lasting commands the flash
module stays in command mode for several milliseconds. This is reported by setting the
corresponding “busy” flag. The data of a busy flash module cannot be read. New
command sequences are not accepted (even if they target different flash modules) and
cause a sequence error until the running operation has finished.

Read accesses to busy flash modules stall the CPU until the read mode is entered again.
A stalled CPU responds only to the reset. As no interrupts can be handled this state must
be avoided. Nevertheless this feature can be used to execute code from a flash module
that erases or programs data in the same flash module.

The IMB Core is limited to control only one running operation. Consequently when one
flash module is in command mode no other commands to either modules are accepted
but the other modules stay readable.

3.9.2.3 Page Mode

The page mode is entered with the “Enter Page Mode” command. Please find its
description below. A flash module that is in page mode can still be read (so it is
concurrently in “read mode”). At a time only one flash module can be in page mode.

When the flash memory is in page mode — i.e. one of the flash modules is in page mode
— some command sequences are not allowed. These are all erase sequences and the
“change read margin” sequence. These are ignored and a sequence error is reported.

User’s Manual 3-21 V1.0, 2007-06
MemoryX2K, V1.1

.. XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)

Preliminary Memory Organization

3.9.3 Operations

The flash memory supports the following operations:

e Instruction fetch.
« Data read.
« Command sequences to change data and control the protection.

3.9.3.1 Instruction Fetch from Flash Memory

Instructions are fetched by the PMU in groups of aligned 64 bits. These code requests
are forwarded to the flash memory. It needs a varying number of cycles (depending on
the system clock frequency) to perform the read access. The number of cycles must be
known to the IMB Core because the flash does not signal data availability. The number
of wait-cycles is therefore stored in the IMB_IMBCTRL register.

One read access to the flash memory delivers 128 data bits and a 9-bit ECC value. The
ECC value is used to detect and possibly correct errors. The addressed 64-bit part of the
128-bit chunk is sent to the PMU. The complete 128 data bits and the 9 ECC bits are
stored in the IMB Core with their address. If a succeeding fetch request matches this
address the data is delivered from the buffer without performing a read access in the
flash memory. The delivery from the buffer happens after one cycle. The flash read wait-
cycles are not waited.

The stored data are a kind of instruction cache. In order to support self-modifying code
(e.g. boot loaders) this cache is invalidated when the corresponding address is written
(i.e. erased or programmed).

In addition to this fetch buffer the IMB Core has an additional performance increasing
feature — the Linear Code Pre-Fetch. When this feature is enabled with
IMB_IMBCTRL.DLCPF = 0 the IMB Core fetches autonomously the following
instructions while the CPU executes from its own buffers or the fetch buffer. As this
feature is fetching only the linear successors (it does not analyze the code stream) it is
most effective for code with longer linear sequences. For code with a high density of
jumps and calls it can even cause a reduction of performance and should be switched
off.

User’s Manual 3-22 V1.0, 2007-06
MemoryX2K, V1.1

.. XC2000 Derivatives
@'neﬂ System Units (Vol. 1 of 2)

Preliminary Memory Organization

3.9.3.2 Data Reads from Flash Memory

Data reads are issued by the DMU. Data is always requested in 16-bit words. The flash
memory delivers for every read request 128 bits plus ECC as described in “Instruction
Fetch from Flash Memory” on Page 3-22.

The IMB Core has to get all 128 bits to evaluate the ECC data. The requested 16 bits will
be delivered to the DMU. All data and ECC bits are kept in the data register and their
address is kept in the address register. For all following data reads the address is
compared with the address register and in case of a match the data is delivered after one
cycle from the data register. Every data read that is not delivered from this cache
invalidates the cache content. When the requested data arrives the cache contains again
valid data.

This small data cache is invalidated when a write (i.e. erase or program) access to this
address happens.

For data reads the IMB Core does not perform any autonomous pre-fetching.

3.9.3.3 Data Writes to Flash Memory

Flash memory content can not be changed by directly writing data to this memory.
Command sequences are used to execute all other operations in the flash except
reading. Command sequences consist of data writes with certain data to the flash
memory address range. All data moves targeting this range are interpreted as command
sequences. If they do not match a defined one or if the IMB Core is busy with executing
a sequence (i.e. itis in “command mode”) a sequence error is reported.

User’s Manual 3-23 V1.0, 2007-06
MemoryX2K, V1.1

@ineon
-

XC2000 Derivatives
System Units (Vol. 1 of 2)

Preliminary Memory Organization

3.9.3.4 Command Sequences

As described before changing data in the flash memory is performed with command

sequences.

Table 3-3 Command Sequence Overview

Command Sequence Description Details on

Page

Reset to Read Reset Flash into read mode and clear Page 3-26
error flags.

Clear Status Clear error and status flags. Page 3-26

Change Read Margin Change read margins. Page 3-26

Enter Page Mode Prepare page for programming. Page 3-27

Enter Security Page Mode | Prepare security page for programming. |Page 3-28

Load Page Word Load page with data. Page 3-28

Program Page Start page programming process. Page 3-29

Erase Sector Start sector erase process. Page 3-30

Erase Page Start page erase process. Page 3-31

Erase Security Page Start security page erase process. Page 3-32

Disable Read Protection Disable temporarily read protection with | Page 3-32
password.

Disable Write Protection Disable temporarily write protection with | Page 3-33
password.

Re-Enable Read/Write Re-enable protection. Page 3-34

Protection

User’s Manual 3-24 V1.0, 2007-06

MemoryX2K, V1.1

.. XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)

Preliminary Memory Organization

3.94 Details of Command Sequences

The description defines the command sequence with pseudo assembler code. It is
“pseudo” because all addresses are direct addresses which is generally not possible in
real assembler code.

The commands are called by a sequence of one to six data moves into the flash memory
range. The data moves must be of the “word” type, i.e. not byte move instructions. The
following sections describe each command. The following abbreviations for addresses
and data will be used:

* PA: "Page Address”. This is the base address of the destination page. For example
the very first page has the address C0’0000. The page 13 of the second array has
the PA = C0’00004 + 1-256-1024 (for the array) + 0-4-1024 (for the sector) + 13-128
(for the page) = C4'0680.

» SECPA: “Security Page Address”. This is the virtual address of a security page. It is
“virtual” because SECPA is just used as argument of the command sequence to
identify the security page but the physical storage of the security page is hidden.
Two security pages are defined:

SecPO: address C0'0000.
SecP1: address C0’'0080y.

» WD: “Write Data”. This is a 16-bit data word that is written into the assembly buffer.

e SA: “Sector Address”. This is the physical sector number as defined in Figure 3-6
based on the address of the flash module. Two examples as clarification:

1. Physical sector number 16 of the first array that is based on C0'0000y is addressed
with SA = C0’0000y + 16-4-:1024 = C1'0000.

2. The second 256 KB array has the base address C4'00004 (as shown in
Table 3-1). So its physical sector number 3 has the SA = C4'0000y + 3:4:1024 =
C4’30004.

* PWD: “Password”. This is a 64-bit password. It is transferred in 4 16-bit data words
PWDO = PWDI[15:0], PWD1 = PWDJ[31:16], PWD2 = PWD[47:32] and PWD3 =
PWD[63:48].

* Address XX followed by two hexadecimal digits, for example “XXAAy". If the
command targets a certain flash module the XX must be translated to its base
address. So “XXAAy" means CO'00AA4 for all commands addressing flash O,
C4'00AAy for flash 1 and C8'00AA for flash 2. If a command (e.g. “Clear Status”)
addresses the complete flash memory the base address of flash module O must be
used.

» Data XX followed by two hexadecimal digits, e.g. XXA5y. This is a “don’t care” data
word where only the low byte must match a certain pattern. So in this example all data
words like 12A5,, or 79A5 can be used.

* MR:“Margin”. This 8-bit number defines the read margin. MR can take the values 004
(normal read), 01y (hard read 0), 02 (alternate hard read 0), 05y (hard read 1), 064
(alternate hard read 1). All other values of MR are reserved.

User’s Manual 3-25 V1.0, 2007-06
MemoryX2K, V1.1

.. XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)

Preliminary Memory Organization

Reset to Read

Arguments: —
Definition:

MOV XXAAy XXFOu
Timing: One cycle command that does not set any “BUSY” flags. But note that an
immediately following write access to the IMB Core is stalled for a few clock cycles during
which the IMB Core is busy with aborting a previous command.

Description: The internal command state machine is reset to initial state and returns to
read mode. An already started programming or erase operation is not affected and will
be continued (the “Reset to Read” command — i.e. all commands — will anyhow not be
accepted while the IMB Core is busy).

The “Reset to Read” command is a single cycle command. It can be used during a
command sequence to reset the command interpreter and return the IMB Core into its
initial state. It clears also all error flags in the Flash Status Register IMB_FSR and an
active page mode is aborted. Because all commands are rejected with a SQER while the
IMB Core is busy “Reset to Read” can not be used to abort an active command mode.

This command clears: PROER, PAGE, SQER, OPER, ISBER, IDBER, DSBER,
DDBER.

Clear Status

Arguments: —
Definition:
MOV XXAAL XXF5y
Timing: 1-cycle command that does not set any busy flags.

Description: The flags OPER, SQER, PROER, ISBER, IDBER, DSBER, DDBER in
Flash status register are cleared. Additionally, the process status bits (PROG, ERASE,
POWER, MAR) are cleared.

Change Read Margin
Arguments: MR
Definition:

MOV XXAA,, XXBOy
MOV XX54,, XXMRy

Timing: 2-cycle command that sets “BUSY” for around 30 micro seconds.
Description: This command sequence changes the read margin of one flash module.
The address XX of the second move identifies the targeted flash module. The flash

module needs some time to change its read voltage. During this time BUSY is set and
this flash module cannot be accessed. The other flash modules stay readable.

User’s Manual 3-26 V1.0, 2007-06
MemoryX2K, V1.1

.. XC2000 Derivatives
@'neﬂ System Units (Vol. 1 of 2)

Preliminary Memory Organization

The argument “MR” defines the read margin:

* 004: normal read margin.

* 01: hard read 0 margin.

* 02y: alternate hard read 0 margin.
* 05y: hard read 1 margin.

* 06: alternate hard read 1 margin.
» Other values: reserved.

For understanding the read margins please refer to “Read Margins” on Page 3-35.

This command must not be issued when the flash memory is in page mode. In this case
it is ignored and a sequence error is reported.

Note: As noted in “Margin Control” on Page 3-60 the command sequences “Program
Page”, “Erase Sector”, “Erase Page” and “Erase Security Page” reset the read
margin back to 00y, i.e. to the normal read margin. The same happens in case of
a flash wake-up.

Enter Page Mode
Arguments: PA

Definition:
MOV XXAAy XX504
MOV PA, XXAA

Timing: 2-cycle command that sets “BUSY” for around 100 clock cycles.

Description: The page mode is entered to prepare a page programming operation on
page address PA. (Write data are accepted only with the “Load Page Word” command.)

With this command, the IMB Core initializes the write pointer of its block assembly
register to zero so that it points to the first word. The page mode is indicated in the status
register IMB_FSR with the PAGE bit, separately for each flash module. The page mode
and the read mode are allowed in parallel at the same time and in the same flash module
so the flash module stays readable. When the addressed page PA is read the content of
the flash memory is delivered. The page mode can be aborted and the related PAGE bit
in IMB_FSR be cleared with the “Reset to Read” command. A new “Enter Page Mode”
command during page mode aborts the actual page mode, which is indicated with the
error flag SQER, and restarts a new page operation. So as mentioned above only one
of the flash modules can be in page mode at a time. If one of the erase commands or the
“Change Read Margin” command are received while in page mode it is ignored and a
sequence error is reported.

If write protection is installed for the sector to be programmed, the “Enter Page Mode”
command is only accepted when write protection has before been disabled using the
unlock command sequence “Disable Write Protection” with four passwords. If global
write protection is installed with read protection, also the command “Disable Read
Protection” can be used if no sector specific protection is installed. If write protection is

User’s Manual 3-27 V1.0, 2007-06
MemoryX2K, V1.1

.. XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)

Preliminary Memory Organization

not disabled when the “Enter Page Mode” command is received, the command is not
executed, and the protection error flag PROER is set in the IMB_FSR.

Enter Security Page Mode
Arguments: SECPA
Definition:

MOV XXAA, XX55
MOV SECPA, XXAAy

Timing: 2-cycle command that sets “BUSY” for around 100 clock cycles.

Description: This command is identical to the “Enter Page Mode” command (see
above), with the following exceptions: The addressed page (SECPA) belongs to the
security pages of the flash memory and not to the user flash range. This command can
only be executed after disabling of read protection and of sector write protection. Only if
protection is not installed (e.g. for the very first installation of keywords), read/write
protection need not be disabled. This command is not accepted and a protection error is
reported if any protection is installed and active.

The use of this command to install passwords and to disable them again is described in
“Protection Handling Details” on Page 3-38.

Load Page Word
Arguments: WD
Definition:

MOV XXF2, WD

Timing: 1-cycle command that does not set any “BUSY” flags. But note that an
immediately following write access to the IMB Core or read from the flash memory is
stalled for a few clock cycles if it arrives while the IMB Core is busy with copying its block
assembly register content into the flash module assembly buffer. During this stall time
the CPU can not perform any action! So either the user software can accept this stall time
(which must be taken into account for the worst-case interrupt latency) or the software
must avoid the blocking accesses.

Description: Load the IMB Core block assembly register with a 16-bit word and
increment the write pointer. The 128 byte assembly buffer (i.e. a complete page) is filled
by a sequence of 64 “Load Page Word” commands. The word address is not determined
by the command but the “Enter Page Mode” command sets a write word pointer to zero
which is incremented after each “Load Page Word” command.

This (sequential) data write access to the block assembly register belongs to and is only
accepted in Page Mode. The command address of this single cycle command is always
the same (F24). These low order address bits also identify the “Load Page Word”
command and the sequential write data to be loaded into the block assembly register.

User’s Manual 3-28 V1.0, 2007-06
MemoryX2K, V1.1

.. XC2000 Derivatives
@'neﬂ System Units (Vol. 1 of 2)

Preliminary Memory Organization

The high order bits XX should address the target page. The IMB Core takes always the
page address that was used by the last “Enter Page Mode” command.

When the 128-bit block assembly register of the IMB Core is filled completely after 8
“Load Page Word” commands the IMB Core calculates the 9 ECC bits and transfers the
block into the assembly buffer of the flash module. After that it sets the write pointer of
the block assembly register back to zero. The following 8 “Load Page Word” commands
fill again the block. After all 8 blocks are filled the “Program Page” command can be
used to trigger the program process that transfers the assembly buffer content into the
flash array.

While the IMB Core transfers the completed block assembly register to the flash module
it can not accept new data for a few cycles. A “Load Page Word” command arriving
during this time is stalled by the IMB Core.

If “Program Page” is called before all blocks of the assembly buffer have received new
data then the remaining bits are cleared.

If more than 8 times 8 commands are used the additional data is lost. The overflow
condition is indicated by the sequence error flag, but the execution of a following
“Program Page” command is not suppressed (the page mode is not aborted).

When a “Load Page Word” command is received and the flash is not in page mode, a
sequence error is reported in IMB_FSR with SQER flag. In case of a new “Enter Page
Mode” command or a “Reset to Read” command during page mode, or in case of an
Application Reset, the write data in the assembly buffer is lost. The current page mode
is aborted and in case of a new “Enter Page Mode” command entered again for the new
address.

Program Page

Arguments: —

Definition:
MOV XXAA, XXAOy
MOV XX5Ah XXAA,

Timing: 2-cycle command that sets “BUSY” for the whole programming duration.

Description: The assembly buffer of the flash module is programmed into the flash array.
If the last block of data was not filled completely this command finalizes its ECC
calculation and copies its data into the assembly buffer before it starts the program
process. The selection of the flash module and the page to be programmed depends on
the page address used by the last “Enter Page Mode” command. The user software
should always address the targeted page.

The programming process is autonomously performed by the selected flash module. The
CPU is not occupied and can continue with its application.

User’s Manual 3-29 V1.0, 2007-06
MemoryX2K, V1.1

.. XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)

Preliminary Memory Organization

The “Program Page” command is only accepted if the addressed flash module is in
Page Mode (otherwise, a sequence error is reported instead of execution). With the
“Program Page” command, the page mode is terminated, indicated by resetting the
related PAGE flag and the command mode is entered and the PROG flag in the status
register IMB_FSR is activated and the BUSY flag for the addressed module is set in
IMB_FSR. While BUSY is set the IMB Core does not accept any further commands.

When the program process has finished BUSY is cleared but PROG stays set. It
indicates which operation has finished and will be cleared by a System Reset or by
“Clear Status”.

Read accesses to the busy flash module are not possible. Reading a busy flash module
stalls until the flash module becomes ready again.

If write protection is installed for the sector to be programmed, the “Program Page”
command is not accepted because the Flash is not in Page Mode (see description of the
“Enter Page Mode” command).

If the page to be programmed is a security page (accepted only in security page mode),
the new protection configuration (including keywords or protection confirmation code) is
valid directly after execution of this command.

While the IMB Core reads the new protection configuration all DMU accesses to any
flash module are stalled.

Erase Sector
Arguments: SA
Definition:

MOV XXAA, XX80,

MOV XX54,, XXAA,
MOV SA, XX33

Timing: 3-cycle command that sets BUSY for the whole erasing duration.

Description: The addressed physical sector in the flash array is erased. Following data
reads deliver all-zero data with correct ECC.

The erasing process is autonomously performed by the selected flash module. The CPU
is not occupied and can continue with its application.

The sector to be erased is addressed by SA (sector address) in the last command cycle.

With the last cycle of the “Erase Sector” command, the command mode is entered,
indicated by activation of the ERASE flag and after start of erase operation also by the
related busy flag in the status register IMB_FSR. The BUSY flag is cleared after finishing
the operation but ERASE stays set. It can be cleared by a System Reset or the “Clear
Status” command.

User’s Manual 3-30 V1.0, 2007-06
MemoryX2K, V1.1

.. XC2000 Derivatives
@'neﬂ System Units (Vol. 1 of 2)

Preliminary Memory Organization

Read accesses to the busy flash module are not possible. Read accesses to the not busy
flash module are especially supported. Reading a busy flash module stalls until the flash
module becomes ready again.

If write protection is installed for the sector to be erased, the Erase Sector command is
only accepted when write protection has before been disabled using the unlock
command sequence “Disable Write Protection”. If global write protection is installed
with read protection, also the command “Disable Read Protection” can be used if no
sector specific protection is installed. If write protection is not disabled when the “Erase
Sector” command is received, the command is not executed, and the protection error
flag PROER is set in the IMB_FSR.

This command must not be issued when the flash memory is in page mode. In this case
it is ignored and a sequence error is reported.

Erase Page
Arguments: PA
Definition:

MOV XXAA,, XX80

MOV XX54, XXAA
MOV PA, XX03y

Timing: 3-cycle command that sets BUSY for the whole erasing duration.

Description: The addressed page is erased. Following data reads deliver all-zero data
with correct ECC.

With the last cycle of the “Erase Page” command, the command mode is entered,
indicated by activation of the ERASE flag and after start of erase operation also by the
related BUSY flag in the status register IMB_FSR. BUSY is cleared automatically after
finishing the operation but ERASE stays set. It is cleared by a System Reset or the
“Clear Status” command.

Read accesses to the busy flash array are not possible. Read accesses to the not busy
flash modules are especially supported. Reading a busy flash module stalls until the
flash module becomes ready again.

If the page to be erased belongs to a sector which is write protected, the command is
only executed when write protection has before been disabled (see “Erase Sector”
command).

In case of using the page erase care must be taken not to exceed the drain disturb limit
of the other pages of the same sector.

This command must not be issued when the flash memory is in page mode. In this case
it is ignored and a sequence error is reported.

User’s Manual 3-31 V1.0, 2007-06
MemoryX2K, V1.1

.. XC2000 Derivatives
@'neﬂ System Units (Vol. 1 of 2)

Preliminary Memory Organization

Erase Security Page

Arguments: SECPA
Definition:
MOV XXAA XX80y

MOV XX54, XXA5y
MOV SECPA, XX53y

Timing: 3-cycle command that sets BUSY for the whole erasing duration.
Description: The addressed security page is erased.

This command is identical to the “Erase Page” command with the following exceptions:
The addressed page (SecPO or SecP1) belongs not to the user visible flash memory
range. This command can only be executed after disabling of read protection and of
sector write protection.

See “Protection Handling Examples” on Page 3-45 for a detailed description of re-
programming security pages.

The structure of the two security pages (SecP0 and SecP1) is described in “Layout of
the Security Pages” on Page 3-43.

After erasing a security page the new protection configuration (including keywords or
protection confirmation code) is valid directly after execution of this command.

While the IMB Core reads the protection configuration all DMU accesses to any flash
module are stalled.

This command must not be issued when the flash memory is in page mode. In this case
it is ignored and a sequence error is reported.

Disable Read Protection

Arguments: PWD

Definition:
MOV XX3Cy XXXXn
MOV XX54, PWDO
MOV XXAA, PWD1
MOV XX54, PWD2
MOV XXAA, PWD3
MOV XX5A4 XX554

Timing: 6-cycle command that does not set any busy flag.

Description: Disable temporarily Flash read protection and — if activated — global write
protection of the whole flash memory. The RPA bit in IMB_IMBCTR s reset.

This is a protected command sequence, using four user defined passwords to release
this command or to check the programmed keywords. For every password one
command cycle is required. If the second or fourth password represents the code of the

User’s Manual 3-32 V1.0, 2007-06
MemoryX2K, V1.1

.. XC2000 Derivatives
@'neﬂ System Units (Vol. 1 of 2)

Preliminary Memory Organization

“Reset to Read” command, it is interpreted as password and the reset is not executed.
The 16-bit passwords are internally compared with the keywords out of the “Security
Page 0”. If one or more passwords are not identical to their related keywords, the
protected sectors remain in the locked state and a protection error (PROER) is indicated
in the Flash status register. In this case, a new “Disable Read Protection” command or
a “Disable Write Protection” command is only accepted after the next Application
Reset.

Note: During execution of the “Disable Read” (or Write) Protection command a
password compare error is only indicated after all four passwords have been
compared with the related keywords.

Note: This command sequence is also used to check the correctness of keywords
before the protection is confirmed in the Security Page 1. A wrong keyword is
indicated by the IMB_FSR flag PROER.

After correct execution of this command, the whole flash memory is unlocked and the
read protection disable bit RPRODIS is set in the Flash Status Register (IMB_FSR).
Erase and program operations on all sectors are then possible, if the flash memory was
also globally write protected (WPA=1), and if they are not separately write protected. The
read protection (including global write protection, if so selected) remains disabled until
the command “Re-Enable Read/Write Protection” is executed, or until the next
Application Reset (including HW and SW reset).

Disable Write Protection

Arguments: PWD
Definition:
MOV XX3Cy, XXXXn
MOV XX54, PWDO
MOV XXAA, PWD1
MOV XX54, PWD2
MOV XXAA, PWD3
MOV XX5Ay XXO05y
Timing: 6-cycle command that does not set any busy flag.

Description: Disable temporarily the global flash write protection or/and the sector write
protection of all protected sectors. The WPA bit in IMB_IMBCTR s reset.

This is a protected command sequence, using four user defined passwords to release
this command (as described above for the “Disable Read Protection” command).

After correct execution of this command, all write-protected sectors are unlocked, which
is indicated in the Flash Status Register (IMB_FSR) with the WPRODIS bit. Erase and
program operations on all sectors are now possible, until

* The command “Re-Enable Read/Write Protection” is executed, or

User’s Manual 3-33 V1.0, 2007-06
MemoryX2K, V1.1

.. XC2000 Derivatives
@"1% System Units (Vol. 1 of 2)

Preliminary Memory Organization

* The next Application Reset (including HW and SW reset) is received.

Re-Enable Read/Write Protection
Arguments: —
Definition:
MOV XX5Ep, XXXXy
Timing: 1-cycle command that does not set any busy flags.
Description: Flash read and write protection is resumed.

This single-cycle command clears RPRODIS and WPRODIS. The IMB Core is triggered
to restore the protection states RPA and WPA from the content of the security page 0 as
defined in Table 3-4 ““Flash State” Determining RPA and WPA” on Page 3-40. So
in effect this command resumes all kinds of temporarily disabled protection installations.

This command is released immediately after execution.

User’s Manual 3-34 V1.0, 2007-06
MemoryX2K, V1.1

.. XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)

Preliminary Memory Organization

3.9.5 Data Integrity

This section describes means for detecting and preventing the inadvertent modification
of data in the flash memory.

3.9.5.1 Error Correcting Codes (ECC)

With very low probability a flash cell can lose its data value faster than specified. In order
to reach the defined overall device reliability each 128-bit block of flash data is
accompanied with a 9-bit ECC value. This redundancy supplies SEC-DED capability,
meaning “single error correction and double error detection”. All single bit errors are
corrected (and the incident is detected), all double bit errors are detected and even most
triple bit errors are detected but some of these escape as valid data or corrected data.

A detected error is reported in the register IMB_FSR_PROT. Software can select which
type of error should trigger a trap by the means of register IMB_INTCTR. In the system
control further means exist to modify the handling of errors (see “SCU Trap Control
Registers” on Page 6-202). The enabled trap requests by the flash module are handled
there as “Flash Access Trap”. In case of a double-bit error the read data is always
replaced with a dummy data word.

3.9.5.2 Aborted Program/Erase Detection

Where the ECC should protect from intrinsic failures of the flash memory that affect
usually only single bits; an interruption of a running program or erase process might
cause massive data corruption:

* The erase process programs first all cells to 1 before it erases them. So depending
on the time when it is interrupted the data might be in a different state. This can be
the old data, all-one, a random value, a weak all-zero or finally all-zero.

* The program process programs all bits concurrently from 0 to 1. If it is interrupted not
all set bits might read as 1 or contain a weak 1.

The register IMB_FSR_OP contains the bits ERASE and PROG. These bits stay set until
the next “Clear Status” command or System Reset. So if an erase or program process
Is interrupted by an Application Reset one of these bits is still set which allows to detect
the interruption. It lies in the responsibility of the software to send the “Clear Status”
command after a finalized program/erase process to enable this evaluation.

Another possible measure against aborted program/erase processes is to prevent resets
by configuring the SCU appropriately.

3.9.5.3 Read Margins

As explained above interrupting a program or erase process might leave cells in a
weakly erased or programmed state. This is particularly dangerous as following reads
might deliver the correct data with correct ECC but these cells do not have the defined

User’s Manual 3-35 V1.0, 2007-06
MemoryX2K, V1.1

.. XC2000 Derivatives
@"]Eﬂ System Units (Vol. 1 of 2)

Preliminary Memory Organization

retention, i.e. after a while they may toggle. This dangerous state can be detected with
“read margins”.

Reading with “hard read 0 margin” returns weak Os as 1s and reading with “hard read 1
margin” returns weak 1s as 0s. Changing the read margin is done with the command
sequence “Change Read Margin” and is reported by the status register “IMB_MAR”.

In order to detect cells that will likely fail in the near future all used flash memory ranges
can be read with both hard reads regularly. If both read values are the same and no read
error occurs nothing has to be done. If this check fails there is still a good chance that
the normal read will return the correct value (or at least has only a correctable one-bit
error). After erasing the page this value can be programmed again to ensure long-term
readability of this data.

In case of using the page erase care must be taken not to exceed the drain disturb limit
of the other pages of the same sector.

3.9.5.4 Protection Overview

The flash memory supports read and write protection for the whole memory and
separate write protection for each logical sector. The logical sector structure is depicted
in Figure 3-6.

256 KB Array
Phys. Logical Logical
Sector Sector Sector
Number Address Number
63 63
9 =64 KB
48
8 =64 KB
Logical
. 32
Grouping
) 7 =64 KB
15 1 6 = 12 KB/16 KB
Phys. Sector% 5=16 KB
Reserved i 4 4=16 KB
Flash 0 0-3=4*4KB
0 0
flash_array_logsectors_diagram.vsd

Figure 3-6 Logical Sectors

If read protection is installed and active, any flash read access is disabled in case of start
after reset from external memory or from internal RAM. Debug access is as well disabled
and thus the execution of injected OCDS instructions. In case of start after reset in

User’s Manual 3-36 V1.0, 2007-06
MemoryX2K, V1.1

.. XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)

Preliminary Memory Organization

internal flash, all flash access operations are controlled by the flash-internal user code
and are therefore allowed, as long as not especially disabled by the user, e.g. before
enabling the debug interface.

Per default, the read protection includes a full (global) flash memory write protection
covering all flash modules. This is necessary to eliminate the possibility to program a
dump routine into the Flash, which reads the whole Flash and writes it out via the
external bus or a serial interface. Program and erase accesses to the flash during active
read protection are only possible, if write protection is separately disabled. Flash write
and read protection can be temporarily disabled, if the user authorizes himself with
correct passwords.

The device also features a sector specific write protection. Software locking of flash
memory sectors is provided to protect code and data. This feature disables both program
and erase operations for all protected sectors. With write protection it is supported to
protect the flash memory or parts of it from unauthorized programming or erase
accesses and to provide virus-proof protection for all sectors.

Read and write protection is installed by specific security configuration words which are
programmed by the user directly into two “Security Pages” (SecP0/1). After any reset,
the security configuration is checked by the command state machine (IMB Core) and
installations are stored (and indicated) in related registers. If any protection is enabled
also the security pages are especially protected.

For authorization of short-term disabling of read protection or/and of write protection a
password checking feature is provided. Only with correct 64-bit password a temporary
unprotected state is taken and the protected command sequences are enabled. If not
finished by the command “Re-Enable Read/Write Protection”, the unprotected state is
terminated with the next reset. Password checking is based on four 16-bit keywords
(together 64 bits) which are programmed by the user directly into the “Security Page 0”
(SecP0).

Special support is provided to protect also the protection installation itself against any
stressing or beaming aggressors. The codes of configuration bits are selected, so that
in case of any violation in the flash array, on the read path or in registers the protected
state is taken per default. In registers and security pages, protection control bits are
coded always with two bits, having both codes, “00g” and “11g” as indication of illegal
and therefore protected state.

User’s Manual 3-37 V1.0, 2007-06
MemoryX2K, V1.1

.. XC2000 Derivatives
@'nm System Units (Vol. 1 of 2)

Preliminary Memory Organization

3.9.6 Protection Handling Details

As shortly described in “Protection Overview” on Page 3-36 the flash memory can be
in different protection states. The protection handling can be separated into different
layers that interact which each other (see Figure 3-7).

The lowest layer consists of the physical content of the security pages SecP0 and
SecP1. This information is used to initialize the protection system during startup.
The next layer consists of registers that report the state of the physical layer
(IMB_PROCONKXx) and the protection state (IMB_FSR). The protection state can be
temporarily changed with command sequences which is reflected in the IMB_FSR.
The highest layer is represented by 4 fields of the IMB_IMBCTR register. These fields
define the protection rights of the customer software (are read or write accesses
currently allowed or not).

The IMB Core controls the protection state of all connected flash modules centrally. In
this position it can supervise all accesses that are issued by the CPU.

_ —=— Boot Mode
Upper Layer «—-" -
Write to
IMB_CTRL DDF DCF |« DDE/DCE
IMB_CTRH RPA WPA
R >
\ \
: \ \
Middle Layer \ \Disable/ Re-
IMB_PROCONX PROCONSs \ <« Enable
\ Protection
IMB_FSR WPRODIS RPRODIS\ \\
AN
\
IMB_FSR RPRO L PROIN PROINER \
R\
A\
Physical Layer <\ Frase/

. Program
Security Page 0 Passwords RPRO PROCONSs Sec. Page
Security Page 1 Lock Code

—>» copied
«=eeeep influences = =) influences indirectly
flash_protection.vsd
Figure 3-7 Protection Layers
User’s Manual 3-38 V1.0, 2007-06

MemoryX2K, V1.1

.. XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)

Preliminary Memory Organization

3.9.6.1 The Lower Layer “Physical State”

After reset the protection state of the device is restored from the following information:

* The security page 1 contains a “lock code”. This consists of two words of data (32
bits). If it has the value AAS5AA55, then security page 0 determines the protection
state. Otherwise (i.e. the lock code was not found) the device is in the “non-protected
state”. The content of the security page 0 is still copied into the registers as described
in “The Middle Layer “Flash State”” on Page 3-39 but their values are ignored in
the non-protected state.

* The security page 0 contains the RPRO double bit, the write protection bits SnU and
4 passwords. If the field RPRO contains a valid 01g or 10g entry the page is valid and
the device is in the “protection installed state”. The page content determines the
security settings after startup. If SecPO contains an invalid RPRO entry the device is
in the “errored protection” state.

To summarize: the content of the security pages determines if the device is in the “non-
protected state”, “protection installed state” or “errored protection state”. These states
are reflected in the register settings of the next layer.

The device is usually delivered in the “non-protected state”.

The exact layout of the security pages is described in “Layout of the Security Pages”
on Page 3-43.

3.9.6.2 The Middle Layer “Flash State”

The middle layer consists of the registers IMB_PROCONx and IMB_FSRx and
commands that manipulate them and the content of the security pages.

During startup the physical state is examined by the IMB Core and it is reflected in the
following bit settings:

* “non-protected state”: IMB_FSR.PROIN = 0, IMB_FSR.PROINER = 0.
* “protection installed state”: IMB_FSR.PROIN =1, IMB_FSR.PROINER = 0.
» “errored protection state”: IMB_FSR.PROIN =0, IMB_FSR.PROINER = 1.

The fourth possible setting PROIN=1 and PROINER=1 is invalid and can not occur.

The IMB_PROCONX registers are initialized during startup with the content of the
security page 0. The bits DSBER and DDBER indicate if an ECC error occurred. The
customer software has thus the possibility to detect disturbed security pages and it can
refresh their content.

Commands

Other bits of the IMB_FSR: RPRODIS, WPRODIS, PROER can be manipulated with
command sequences and define together with the other bits the protection effective for
the next layer. All three bits are 0 after system startup.

User’s Manual 3-39 V1.0, 2007-06
MemoryX2K, V1.1

.. XC2000 Derivatives
@"1% System Units (Vol. 1 of 2)

Preliminary Memory Organization

The command “Disable Read Protection” sets RPRODIS to 1 if the correct passwords
that are stored in SecPO are supplied. If incorrect passwords are entered the bit PROER
is set and RPRODIS stays unchanged. As protection against “brute force attacks” that
search the correct password the password detection is locked. So after supplying the
first incorrect password all following passwords even the correct ones are rejected with
PROER. This state is only left by an Application Reset or by erasing SecPO.

The disabled protection can be enabled again by the Application Reset or by the
command “Re-Enable Read/Write Protection” which clears RPRODIS again.

The bit PROER can be reset by an Application Reset or by the commands “Reset to
Read” and “Clear Status”.

The command “Disable Write Protection” sets WPRODIS to 1 if the correct passwords
are supplied. It behaves analog to RPRODIS as described above.

The command “Re-Enable Read/Write Protection” clears RPRODIS and WPRODIS.

The commands “Enter Page Mode”, “Enter Security Page Mode”, “Erase Page”,
“Erase Security Page” and “Erase Sector” set PROER if the write access to the
addressed range is not allowed. If a write access is allowed or not is determined by the
next level.

Table 3-4 summarizes how the “Flash State” of protection determines the RPA and WPA
fields of IMB_IMBCTR. For the double bits a short notation is used here and in the
following sections: 1 means active, 0 means inactive, ‘# means invalid and ‘—' means do
not care including invalid states. The symbol ‘| means logic or.

Table 3-4 “Flash State” Determining RPA and WPA

IMB_ |[IMB_ |IMB_ |[IMB_ |IMB_ |Resulting Security Level in RPA and WPA
FSR. |FSR. |FSR. |FSR. |FSR.
PROI |PROI |RPR |RPR |WPR
N NER |O ODIS |ODIS
0 0 - - - Non-protected state:
RPA =0, WPA = 0.
1 0 Protection installed state (possibly disabled,
see below):
0 - 0 RPA =0, WPA = 1.
0 0 1 RPA =0, WPA = 0.
1|1# |0 0 RPA =1, WPA = 1.
- 1 1 RPA =0, WPA = 0 (all disabled).
1|1# |0 1 RPA =1, WPA = 0.
11# |1 0 RPA =0, WPA = 1.
User’s Manual 3-40 V1.0, 2007-06

MemoryX2K, V1.1

@ineon
-

XC2000 Derivatives

System Units (Vol. 1 of 2)

Preliminary Memory Organization
Table 3-4 “Flash State” Determining RPA and WPA (cont'd)
IMB_ |IMB_ |IMB_ |[IMB_ |IMB_ |Resulting Security Level in RPA and WPA
FSR. |FSR. |FSR. |FSR. |FSR.
PROI |PROI |RPR |RPR |WPR
N NER |O ODIS |ODIS
0 1 Errored protection state (see below):
- 0 0 RPA =1, WPA =1.
- 0 1 RPA =1, WPA =0.
- 1 0 RPA =0, WPA =1.
- 1 1 RPA =0, WPA =0.
3.9.6.3 The Upper Layer “Protection State”

This layer consists mainly of the 4 fields DCF, DDF, WPA and RPA of the IMB_IMBCTR
register. These determine the effective protection state together with registers of the
lower layers. Some of the above mentioned command sequences directly influence
these fields as well. In order to increase the resistance against beaming or power supply
manipulation all 4 fields are coded with 2 bits. Generally “01” means active, “10” inactive
and the two other states “00” and “11” are invalid and are recognized as “attacked” state.

Effective Security Level

The effective security level based on these 4 double-bits is summarized in Table 3-5 and
Table 3-6. For the double bits the same short notation is used as before: 1 means active,
0 means inactive, ‘# means invalid and ‘—’ means do not care including invalid states.

Table 3-5 Effective Read Security

RPA DCF DDF Security Level

0 — — No read protection.

1|# 0 0 No read protection.
- 1|# Data reads prohibited.
1|# - Code fetches prohibited.

Table 3-6 Effective Write Security

WPA RPA Security Level

0 - No write protection

User’s Manual
MemoryX2K, V1.1

3-41

V1.0, 2007-06

.. XC2000 Derivatives
@'neﬂ System Units (Vol. 1 of 2)

Preliminary Memory Organization

Table 3-6 Effective Write Security (cont’d)

WPA RPA Security Level

1|# 1|# Global write protection.

1|# 0 Sector specific write protection depending on
IMB_PROCONX.

To summarize:

* Read protection is always globally affecting the whole flash memory range. Code
fetches and data reads can be separately controlled.

» Write protection can be global when the read protection is effective or it can be
specific for each logical sector.

The lower and the middle security layers determine how the 4 effective IMB_IMBCTR
fields are preset, changed and how software can access them. This is discussed in the
following paragraphs.

Initialization of the Effective Security Level

After Application Reset protection is activated so that RPA, WPA, DDF and DCF are set.
During startup the IMB Core determines the stored security level as described in “The
Lower Layer “Physical State”” on Page 3-39 and sets IMB_FSR.PROIN and
IMB_FSR.PROINER and IMB_PROCONXx as described in “The Middle Layer “Flash
State”” on Page 3-39. The IMB Core further initializes the IMB_IMBCTR fields RPA and
WPA according to the rules of Table 3-4.

The bits DDF and DCF of the IMB_IMBCTR are not initialized by the IMB Core. During
system startup they are initialized depending on the startup condition. If code fetching
starts in the flash memory then they are set to the inactive state. In all other cases they
are activated to prevent read access to the flash memory without proving password
knowledge.

Changing the Effective Security Level

During run-time the effective security level can be changed. This can be done by directly
writing to the IMB_IMBCTR register or indirectly by changing the bits of the middle layer
by commands as “Disable Write Protection” or even double indirectly by changing the
content of the security pages which changes bits in the middle layer and influences the
effective security level.

Writing directly to IMB_IMBCTR:

e DCF and DDF can be deactivated only if RPA is inactive. They can always be
activated.

Indirectly by using a command sequence:
* A successful “Disable Read Protection” sets RPRODIS and clears RPA.

User’s Manual 3-42 V1.0, 2007-06
MemoryX2K, V1.1

.. XC2000 Derivatives
@'neﬂ System Units (Vol. 1 of 2)

Preliminary Memory Organization

* A successful “Disable Write Protection” sets WPRODIS and clears WPA.
« “Re-Enable Read/Write Protection” clears RPRODIS and WPRODIS and sets RPA
and WPA according to Table 3-4 depending on PROIN, PROINER and RPRO.

Double indirect by changing security pages. After executing a command sequence that
changed the content of a security page the IMB Core immediately reads back the pages
and determines all resulting security data as described for system startup in
“Initialization of the Effective Security Level” on Page 3-42. The examples in
“Protection Handling Examples” on Page 3-45 will show how this can be used for
installing and removing protection or changing passwords.

3.9.6.4 Reaction on Protection Violation

If software tries to violate the protection rules the following happens:

* Reading data when read protection is effective: The bit IMB_FSR.PROER is set and
the Flash access trap can be triggered via the SCU if IMB_INTCTR.DPROTRP is 0.
Default data is delivered.

* Fetching code when read protection is effective: the trap code “TRAP 15p” is
delivered instead.

* Programming or erasing memory ranges when they are write protected: PROER is
set.

3.9.6.5 Layout of the Security Pages

The previous sections just mentioned the content of the security pages. This section
depicts their exact layout. Figure 3-8 depicts symbolically the layout of the security
pages 0 and 1.

User’s Manual 3-43 V1.0, 2007-06
MemoryX2K, V1.1

.. XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)

Preliminary Memory Organization
Security Page 0 Security Page 1
FFOO7F |, FFOOFF |
©
)
>
c
S
™~
(\i i®)
X
8
m c
S
FF0020,, ~
unused :
unused .
E
unused | < e
unused | XX
(&)
unused (@)
3 PROCON P> E
Words —
P1
FF'0010 H PO FF'0090 H
unused unused
unused unused
unused | © unused | ©
FF0008 , RPRO % unused %
4 Pass- PW3 Q unused Q
Words —F PW2 |0 unused | @ Lock Code
PW1 CH 4} (2 Words)
FF'0000 H PWO FF'0080 H CL
flash_security_page_layoutvsd

Figure 3-8 Layout of Security Pages

Generally the 16-bit words are stored as always in the XC2000 in little endian format.

The PWx words contain the passwords.

The double bit RPRO is stored as in the related ISFR IMB_FSR_PROT in the bits 15
and 14. The other bits of this word are unused and should be kept all-zero.

The PROCON data is stored as defined in the IMB_PROCONX (x=0-2) ISFR.

The lock code consists of the two words CL and CH. Both contain “AA55” to form
the correct lock code.

All bytes of the used blocks of the security pages (block 0 and 1 of SecP0 and block O of
SecP1l) are to be considered as “reserved” and must be kept erased, i.e. with all-zero
content. The unused blocks of the security pages (blocks 2 to 7 of SecP0 and blocks 1
to 7 of SecP1) shall be programmed with all-one data.

User’s Manual 3-44 V1.0, 2007-06
MemoryX2K, V1.1

.. XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)

Preliminary Memory Organization

3.9.7 Protection Handling Examples
Some examples on how to work with the protection system.

Delivery State
The device is delivered in the “non-protected state”.
Security page 1 is erased (so it does not contain the “lock code” AAS5AA55,)).

Security page 0 is erased and so “invalid” but because SecP1 is erased this data is
anyhow not evaluated. Only its content is copied into corresponding the registers.

During startup the bits DDF and DCF are set depending on the start mode but as RPA
and WPA are inactive all accesses to the flash memory are allowed.

The data sectors of the flash memory are delivered in the erased state as well. All sectors
can be programmed. After uploading the software the customer can install write and read
protection.

First Time Password Installation

In order to install a password generally the lock code in SecP1 has to be erased. In this
case the code is not present.

After that SecP0O must be erased with “Erase Security Page” in order to be able to
change RPRO. Erasing SecPO clears RPRO to “00g” which is an invalid state. After
finishing the erase command the IMB Core restores the IMB_FSR and IMB_IMBCTR
fields from the flash data.

Because no lock code is present in SecP1 the invalid state of RPRO has no effect on the
user visible protection. Still all parts of the flash memory can be written.

The second step is to program the information of SecP0O with the required security
information. Again the IMB Core reads immediately back the stored data and initializes
the security system. As SecP1 still does not contain the lock code the device stays in the
“non-protected” mode.

The security pages cannot be read directly by customer software. The data programmed
into SecPO can therefore only be verified indirectly. The data of the RPRO and SnU fields
can be checked by reading the IMB_PROCON and IMB_FSR registers. The passwords
can be verified with the command “Disable Read Protection”. If the password does not
match the bit PROER is set. But because of the erased SecP1 the flash memory stays
writable. So after erasing SecPO0 the correct password can be programmed again.

After the SecP0 was verified successfully SecP1 gets programmed with the lock code
AA55AA55,, which enables the security settings of SecPO.

Because the password validation left RPRODIS set the command “Re-Enable Read/
Write Protection” must be used to finally activate the new protection.

User’s Manual 3-45 V1.0, 2007-06
MemoryX2K, V1.1

.. XC2000 Derivatives
@"1% System Units (Vol. 1 of 2)

Preliminary Memory Organization

Changing Passwords or Security Settings

Changing the passwords is a delicate operation. The interrelation of the two security
pages must be kept in mind.

Usually in the protected state the SecP1 contains the lock code. First write protection
must be disabled with the correct passwords. Then the lock code in SecP1 is erased. If
this operation was successful PROIN will be cleared by the IMB Core. Now SecPO can
be safely erased.

From this point on the security pages are in the factory delivery state and the new
passwords and security settings can be installed as described above.

Attention: The number of times a security page may be changed is noted in the
datasheet.

User’s Manual 3-46 V1.0, 2007-06
MemoryX2K, V1.1

.. XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)

Preliminary Memory Organization

3.9.8 EEPROM Emulation

The flash memory of the XC2000 is used for three purposes:

1. Storage of program code. Updates happen usually very seldom. The main criteria to
be fulfilled is a retention of the life-time of the product.

2. Storage of constant data: this data is stored together with program code. So this data
is very seldom updated. Endurance is of no issue here but retention identical to the
code memory is required.

3. Data updated during run-time: this might be data with a very high frequency of
updates like a mileage counter or access keys for key-less entry. Other data might
be changed only in case of failures and other data might only be transferred from
RAM to non-volatile memory before the system is powered down.

Especially for the third type of data the non-volatiie memory needs EEPROM like
characteristics:

* Fine program/erase granularity which is in EEPROMSs typically 1 byte.

» Higher endurance than the intrinsic endurance of flash cells.

e Short program and erase duration per byte. Especially for storing data in an
emergency (e.g. power failure) short latencies might be required.

A basic requirement for changing data during run-time is that code execution can still
resume, especially interrupt requests must still be serviced. This requirement is fulfilled
in the XC2000 because all three flash modules work independently. If one is busy with
program or erase then code can still be executed from the other two.

The other requirements are more difficult to fulfill because the XC2000 does not have an
EEPROM available but only the flash memory with the already frequently mentioned
limitations: big program/erase granularity, moderately long program/erase duration,
limited cell endurance with reduced retention at high number of program/erase cycles,
pages not isolated but affected by drain disturbs.

In order to alleviate these effects on run-time storage of data software is used to emulate
EEPROM. There is quite a number of algorithms for efficiently using flash memory as
EEPROM. The following section describes one (the most simple) of these algorithms.

It should be noted that the XC2000 does not offer the customer any hardware means for
EEPROM emulation. All of the following must be realized by software.

3.9.8.1 The Traditional EEPROM Emulation

This algorithm was already used in the Pegasus devices. The key point is to solve the
limited endurance by storing data in N different physical places. In XC2000 the algorithm
would use N sequential pages or groups of pages. If data is currently stored in the page
“X" then the next program happens to the page “(x+1) mod N”. The software typically
stores the current address in a table in RAM to avoid searching for the page at every
access.

User’s Manual 3-47 V1.0, 2007-06
MemoryX2K, V1.1

.. XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)

Preliminary Memory Organization

In order to find the current data after boot-up every entry must be marked. Either it
contains a counter (from 0 to 2*N-1) or the old entries are invalidated by erasing the page
after programming the new one.

After boot-up the emulation driver software must recover this mapping information?). The
same must happen in case of power-down modes that shut-down the main memory.

As all involved pages are re-used cyclically the endurance from customer perspective is
increased by the factor N. N must be chosen high enough to fulfill endurance and
retention requirements. Disturbs in the group of N pages are no issue because they incur
at most N-1 disturbs before they get written with new data. Care must be taken however
if one sector accommodates different groups of pages with different update behavior. In
this case the updates of one group of pages could exceed the disturb limits of the other
group. So generally one sector should be used only by one such EEPROM cyclic buffer.

The algorithm keeps the old data until the new data is verified so power failure during
programming can only destroy the last update but the older data is still available. There
are still some issues with power failure that need special treatment:

* Power is cut during programming: the following boot-up might find an apparently
correctly programmed page. However the cells might be not fully programmed and
thus have a much lower retention. The algorithm must detect this situation and
finalize the programming, e.g. with margin reads.

* Power is cut during erase: the same as above can happen. Data may appear as
erased but the retention is lowered.

The algorithm can be improved to cover these cases as well. The easiest solution is to
use margin reads to verify the program or erase steps.

The main deficiency of the described algorithm is that the software designer is required
to plan the use of the flash memory thoroughly. The user has to choose the correct value
of N. Then all data has to be allocated to pages. Data sharing one page should have a
similar or better identical update pattern (otherwise unchanged data is unnecessarily
written). If one set of data does not fill a complete sector the available pages must be
possibly left unused because they might incur too many drain disturbs.

There are other algorithms that try to alleviate these efforts by monitoring the flash usage
and adapt automatically the assignment of data to flash cells.

1 This time must be taken into account for calculating the startup duration.

User’s Manual 3-48 V1.0, 2007-06
MemoryX2K, V1.1

.. XC2000 Derivatives
@'neﬂ System Units (Vol. 1 of 2)

Preliminary Memory Organization

3.9.9 Interrupt Generation

Long lasting processes (these are mainly: program page, erase page, erase sector and
margin changes) set the IMB_FSR.BUSY flag of one flash module when accepting the
request and reset this flag after finishing the process. Software is required to poll the
busy flag in order to determine the end of the operation. In order to release the software
from this burden an interrupt can be generated. If the interrupt is enabled by
IMB_INTCTRL.IEN then all transitions from 1 to O of one of the 3 IMB_FSR.BUSY flags
send an interrupt request.

The “Enter Page Mode” command sets BUSY only for around 100 clock cycles. It is
usually not advisable to enable the interrupt for this command.

The register IMB_INTCTR contains fields for the interrupt status “ISR”, an enable for the
interrupt request “IEN” and fields for clearing the status flag “ICLR” or setting if “ISET”. It
should be noted that the interrupt request is only sent when ISR becomes 1 and IEN was
already 1. No interrupt is sent when IEN becomes 1 when ISR was already 1 or both are
setto 1 at the same time.

User’s Manual 3-49 V1.0, 2007-06
MemoryX2K, V1.1

.. XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)

Preliminary Memory Organization

3.10 On-Chip Program Memory Control

The internal memory block “IMB” contains all memories of the so called “on-chip program
memory area” in the address range from C0’'0000y to FF'FFFFy. Included are the
program SRAM, the embedded flash memories and central control logic called “IMB
Core”.

In the XC2000 device the IMB contains the following memories:

* 764 KB flash memory in three independent modules.
* 64 KB program SRAM (see Section 3.4.1).

The IMB connects these memories to the CPU data bus and the instruction fetch bus.
Each memory can contain instruction code, data or a mixture of both. The IMB manages
accesses to the memories and supports flash programming and erase.

3.10.1 Overview

The Figure 3-9 shows how the IMB and its memories are integrated into the device
architecture. Only the main data streams are included. The data buses are usually
accompanied by address and control signals and check-sum data like parity or ECC.

IMB
C166SV2
IMB PSRAM
DMU Data Core
(Data access) « 15 > ﬁL} (l;rggg:\/lr;
CPU 64
PMU Instryctions
(Instr fetch) <
64 Flash Memory
<«——»{ Flash Module 0
128
<«——» Flash Module 1
128
«——» Flash Module 2
128
imb_block_diagram.vsd

Figure 3-9 IMB Block Diagram

The CPU has two independent busses. The instruction fetch bus is controlled by the
program management unit “PMU” of the CPU. It fetches instructions in aligned groups of
64 bits. The instruction fetch unit of the CPU predicts the outcome of jumps and fetches

User’s Manual 3-50 V1.0, 2007-06
MemoryX2K, V1.1

.. XC2000 Derivatives
@'neﬂ System Units (Vol. 1 of 2)

Preliminary Memory Organization

instructions on the predicted branch in advance. In case of a misprediction this interface
can abort outstanding requests and continues fetching on the correct branch. As the
CPU can consume up to one 32-bit instruction per clock cycle the performance of this
interface determines the CPU performance.

The data bus is controlled by the data management unit “DMU” of the CPU. It reads data
in words of 16 bits. Write accesses address as well 16-bit words but additional byte
enables allow changing single bytes.

Because of the CPU’s “von Neumann” architecture data and instructions (and “special
function registers” to complete the list) share a common address range. When
instructions are used as data (e.g. when copying code from an IO interface to the
PSRAM) they are accessed via the data bus. The pipelined behavior of the CPU can
cause that code fetches and data accesses are requested simultaneously. The IMB
takes care that accesses can perform concurrently if they address different memories or
flash modules.

Additional connections of the IMB to central system control units exist. These are not
shown in the block diagram.

User’s Manual 3-51 V1.0, 2007-06
MemoryX2K, V1.1

@ineon
-

XC2000 Derivatives

System Units (Vol. 1 of 2)

Preliminary

3.10.2

Register Interface

Memory Organization

The “IMB Registers” on Page 3-52 describes the special function registers of the IMB.
In “System Control Registers” on Page 3-63 the special function registers that
influence the IMB but are not allocated to the IMB address range are described.

3.10.2.1

The section describes all IMB special function registers.

IMB Registers

Table 3-7 Registers Overview

Register Short Register Long Name Offset Page Number
Name Address
IMB_IMBCTRL IMB Control Low FF FFOO4 |Page 3-52
IMB_IMBCTRH IMB Control High FF FFO2, |Page 3-54
IMB_INTCTR Interrupt Control FF FFO4y, |Page 3-55
IMB_FSR_BUSY Flash State Busy FF FFO64 |Page 3-57
IMB_FSR_OP Flash State Operations FF FFO8y |Page 3-57
IMB_FSR_PROT Flash State Protection FF FFOA, |Page 3-59
IMB_MAR Margin FF FFOCy |Page 3-61
IMB_PROCONO Protection Configuration O FF FF104 |Page 3-62
IMB_PROCON1 Protection Configuration 1 FF FF12, |Page 3-62
IMB_PROCON2 Protection Configuration 2 FF FF14, |Page 3-62
IMB Control

Global IMB control.

Both IMB_IMBCTRL and IMB_IMBCTRH are reset by an Application Reset.

The write access to both registers is controlled by the register security mechanism as
defined in the SCU chapter “Register Control” on Page 6-181. Please note that the
register write-protection is not activated automatically again after an access to
IMB_IMBCTR because this happens only for SCU internal registers.

IMB_IMBCTRL

IMB Control Low ISFR (FF FFOOR) Reset value: 558C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T I I T
DDF DCF - - - - - - - - DPLE WSFLASH
r\I/v rW - - - - - - - - rw | rw |
User’s Manual 3-52 V1.0, 2007-06

MemoryX2K, V1.1

@ineon
-

XC2000 Derivatives
System Units (Vol. 1 of 2)

Preliminary

Memory Organization

Field

Bits

Typ

Description

WSFLASH

[2:0]

Wait States for Flash Access

Number of wait cycles after which the IMB expects
read data from the flash memory.

This field determines as well the read timing of the
PSRAM in the flash emulation address range. See
“Flash Emulation” on Page 3-12.

Note: WSFLASH must not be 0. This value is
forbidden!

DLCPF

Disable Linear Code Pre-Fetch
0: “High Speed Mode”: When the next read
request will be delivered from the buffer and so
the flash memory would be idle, the IMB Core
autonomously increments the last address
and reads the next 128-bit block from the flash
memory.
1: “Low Power Mode”: This feature is disabled.
Usually for code with power minimization
requirements or for code with short linear code
sections this feature should be disabled (DLCPF =
1). Enabling this feature is only advantageous for
code section with longer linear sequences. With
lower values of WSFLASH the performance gain of
DLCPF=0 is reduced. In case of low WSFLASH
settings DLCPF=1 might even lead to better
performance than with linear code pre-fetch.

DCF

[13:12]

Disable Code Fetch from Flash Memory

“01”: Short notation DCF = 1. If RPA = 1 instructions
cannot be fetched from flash memory. If RPA
= 0 this field has no effect.

“10”: Short notation DCF = 0. Instructions can be
fetched independent of RPA.

“00” | “11™: lllegal state. Has the same effect as “01".
This state can only be left by an Application
Reset.

During startup or test mode or when RPA =0

software can change this field to any value.

Otherwise code fetch can only be disabled but not

enabled anymore until the next Application Reset.

User’s Manual
MemoryX2K, V1.1

3-53 V1.0, 2007-06

@ineon
-

XC2000 Derivatives
System Units (Vol. 1 of 2)

Preliminary Memory Organization
Field Bits Typ | Description
DDF [15:14] |rw |Disable Data Read from Flash Memory

“01”: Short notation DDF = 1. If RPA = 1 data cannot
be read from flash memory. If RPA = 0 this
field has no effect.

“10”: Short notation DDF = 0. Data can be read
independent of RPA.

“00” | “11™: lllegal state. Has the same effect as “01”.
This state can only be left by an Application
Reset.

During startup or test mode or when RPA =0

software can change this field to any value.

Otherwise data reads can only be disabled but not

enabled anymore until the next Application Reset.

IMB control high word. The WPA and RPA fields are described in “Protection Handling
Details” on Page 3-38.

IMB_IMBCTRH
IMB Control High

ISFR (FF FFO2R) Reset value: 00054

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PSPROT - - -1 - RPA WPA
| | | I’\IN | - - - - I‘i’] I‘Ih
Field Bits Typ | Description
WPA [1:0] rh | Write Protection Activated

“01”: Short notation WPA = 1. The write protection
of the flash memory is activated.

“10”: Short notation WPA = 0. The write protection
is not activated.

“00” | “11™: lllegal state. Same effect as “01”. The
illegal state can only be left by an Application
Reset.

This field is only changed by the IMB Core. Software

writes are ignored.

User’s Manual
MemoryX2K, V1.1

3-54 V1.0, 2007-06

@ineon
-

XC2000 Derivatives
System Units (Vol. 1 of 2)

Preliminary Memory Organization
Field Bits Typ | Description
RPA [3:2] rh | Read Protection Activated
“01”: Short notation RPA = 1. The read protection of
the flash memory is activated.
“10": Short notation RPA = 0. The read protection is
not activated.
“00” | “11”: lllegal state. Same effect as “01”. The
illegal state can only be left by an Application
Reset.
This field is only changed by the IMB Core. Software
writes are ignored.
PSPROT [15:8] |rw |PSRAM Write Protection
This 8-bit field determines the address up to which
the PSRAM is write protected.
The start address of the writable range is E0’00004
+ 10004*PSPROT. The end address is determined
by the implemented memory. The equivalent range
in the PSRAM area with flash access timing is
protected as well. Here the writable range starts at
E8’00004 + 10004*PSPROT and ends at E8'FFFF4
for XC2000.
So with PSPROT=004 the complete PSRAM is
writable. In case of XC2000 with PSPROT=104 or
bigger the complete implemented PSRAM is write-
protected.
Interrupt Control
Interrupt control and status.
Reset by Application Reset.
IMB_INTCTR
Interrupt Control ISFR (FF FF04R) Reset value: 00004
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PSE DPR
PSE DDD |DIDT
ISR R - — — |RCL |ISET|ICLR| - - - — |OTR TRP | RP IEN
R P
rh rh - - - w w w - - - - rw rw rw o rw
User’s Manual 3-55 V1.0, 2007-06

MemoryX2K, V1.1

@ineon
-

XC2000 Derivatives
System Units (Vol. 1 of 2)

Preliminary

Memory Organization

Field

Bits

Typ

Description

IEN

Interrupt Enable
If set, the interrupt signal of the IMB gets activated
when ISR is set.

DIDTRP

Disable Instruction Fetch Double Bit Error Trap
If set, a double bit ECC error does not cause the
replacement of the fetched data by a trap instruction.

DDDTRP

Disable Data Read Double Bit Error Trap
If set, a double bit ECC error during data read does
not trigger the Flash access hardware trap.

DPROTRP

Disable Protection Trap

If set, a read request from read protected flash
memory does not trigger the Flash access hardware
trap.

ICLR

Interrupt Clear
When written with 1 the ISR is cleared. Reading this
bit delivers always 0. Writing a 0 is ignored.

ISET

Interrupt Set

When written with 1 the ISR is set and if IEN is set
the interrupt signal is activated. Reading this bit
delivers always 0. Writing a O is ignored. When
writing ISET and ICLR to 1 concurrently ISET takes
priority so ISR is set.

PSERCLR

10

Clear PSRAM Error Flag
When written with 1 the PSER is cleared. Reading
this bit delivers always 0. Writing a O is ignored.

PSER

14

rh

PSRAM Error Flag

This flag is set when write requests to the write
protected or not implemented PSRAM range are
detected. This flag can be cleared by writing 1 to
PSERCLR.

ISR

15

rh

Interrupt Service Request

If set, it indicates that at least one IMB_FSR.BUSY
bit changed from 1 to 0. If IEN was set an interrupt
request is sent to the interrupt controller. After
servicing the interrupt the software handler clears
this flag by writing a 1 to ICLR.

User’s Manual
MemoryX2K, V1.1

3-56 V1.0, 2007-06

.. XC2000 Derivatives
@"1% System Units (Vol. 1 of 2)

Preliminary Memory Organization

Flash State

Flash state. Split into 3 registers IMB_FSR_BUSY, IMB_FSR_OP, and
IMB_FSR_PROT. The protection relevant fields or IMB_FSR_PROT are described in
“Protection Handling Details” on Page 3-38.

The registers are reset by the Application Reset with the exception of “ERASE”, “PROG”,
and “OPER”. These three fields are only reset by a System Reset.

IMB_FSR_BUSY

Flash State Busy ISFR (FF FFO6R) Reset value: 00004
15 14 13 12 11 10 | 9 | 8 7 6 5 4 3 2 | 1 | 0
T PAGE T BUSY
_ _ — _ Z ‘ rh ' - - — — - | rh |

Field Bits Typ | Description

BUSY [2:0] rh | Busy

A flash module is busy with a task. Each bit position
corresponds to one of the 3 flash modules. The task
is indicated by the bits MAR, POWER, ERASE or
PROG of IMB_FSR_OP. BUSY is automatically
cleared when the task has finished. The
corresponding task indication is not cleared in order
to allow an interrupt handler to determine the
finished task.

PAGE [10:8] |rh |Page Mode Indication

Set as long the corresponding flash module is in
page mode. Page mode is entered by the “Enter
Page Mode” commands and finished by a “Program
Page” command. The page mode can be also left by
a “Reset to Read” command. Also an Application
Reset clears this bit.

IMB_FSR_OP

Flash State Operations ISFR (FF FFO8) Reset value: 0000y

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
OPE | SQE POW|ERA |PRO

T T T T R R MR sE| G

— _ _ — _ — — - — - rh rh rh rh rh rh

User’s Manual 3-57 V1.0, 2007-06
MemoryX2K, V1.1

@ineon
-

XC2000 Derivatives
System Units (Vol. 1 of 2)

Preliminary

Memory Organization

Field

Bits

Typ

Description

PROG

rh

Program Task Indication

This bit is set when a program task is started. The
affected flash module is indicated by a BUSY bit.
The PROG bit is not automatically reset but must be
cleared by a “Clear Status” command. This bitis not
cleared by an Application Reset but only by a
System Reset.

ERASE

rh

Erase Task Indication

This bit is set when an erase task is started. The
affected flash module is indicated by a BUSY bit.
The ERASE bit is not automatically reset but must be
cleared by a “Clear Status” command. This bitis not
cleared by an Application Reset but only by a
System Reset.

POWER

rh

Power Change Indication

This bit indicates that a flash module is in its startup
phase or in a shutdown phase. The BUSY bits
indicate which flash module is busy. This bit is not
automatically reset but must be cleared by a “Clear
Status” command.

MAR

rh

Margin Change Indication

If a read margin modification is requested this bit is
set together with the corresponding BUSY bit. The
BUSY bit is cleared when the margin change is
effective and the flash module can be read again.
The MAR bit must be cleared by a “Clear Status”
command.

SQER

rh

Sequence Error

This bit is set by a errored command sequence or a
command that is not accepted. Itis cleared by “Clear
Status” and “Reset to Read”.

User’s Manual
MemoryX2K, V1.1

3-58 V1.0, 2007-06

.. XC2000 Derivatives
@"1% System Units (Vol. 1 of 2)

Preliminary Memory Organization
Field Bits Typ | Description
OPER 5 rh | Operation Error

The IMB Core maintains internal bits that are set
when starting a program or erase process. They are
cleared when this process finishes. These bits are
not reset by an Application Reset but only by a
System Reset. If one of these bits is set after
Application Reset the IMB Core sets OPER. So this
signals that a running erase or program process was
interrupted by an Application Reset.

The OPER is cleared by “Reset to Read”, “Clear
Status” or a System Reset.

IMB_FSR_PROT

Flash State Protection ISFR (FF FFOAR) Reset value: x000y
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RPRO | _ | _ |PDB|DSB|IDBE|ISBE, | | _ |PRO|WPR|RPRPROIPROI
ER | ER R R ER |ODIS|ODIS|NER| N
rh - - rh rh rh rh - - - rh rh rh rh rh
Field Bits Typ | Description
PROIN 0 rh | Flash Protection Installed
Modified by the IMB Core. Cleared by Application
Reset.
PROINER 1 rh | Flash Protection Installation Error
Modified by the IMB Core. Cleared by Application
Reset.
RPRODIS 2 rh | Read Protection Disabled

The read protection was temporarily disabled with
the “Disable Read Protection” command. Modified
by the IMB Core. Cleared by Application Reset.

WPRODIS 3 rh | Write Protection Disabled

The write protection was temporarily disabled with
the “Disable Write Protection” command. Modified
by the IMB Core. Cleared by Application Reset.

User’s Manual 3-59 V1.0, 2007-06
MemoryX2K, V1.1

.. XC2000 Derivatives
@"1% System Units (Vol. 1 of 2)

Preliminary Memory Organization
Field Bits Typ | Description
PROER 4 rh | Protection Error

Set by a violation of the installed protection. Reset by
the “Clear Status” and “Reset to Read” commands
or an Application Reset.

ISBER 8 rh |Instruction Fetch Single Bit Error

Set if during instruction fetch a single-bit ECC error
was detected (and corrected). Reset by “Clear
Status” or “Reset to Read” commands or an
Application Reset.

IDBER 9 rh |Instruction Fetch Double Bit Error

Set if during instruction fetch a double-bit ECC error
was detected (and not corrected). Reset by “Clear
Status” or “Reset to Read” commands or an
Application Reset.

DSBER 10 rh | Data Read Single Bit Error
Same as ISBER for data reads.

DDBER 11 rh Data Read Double Bit Error
Same as IDBER for data reads.

RPRO [15:14] |[rh | Read Protection Configuration

This field is copied by the IMB Core from the
corresponding field in the security page 0. After
Application Reset read protection is activated.

Margin Control

Read margin control. Each field corresponds to one flash module. A hard read 0 detects
not completely erased cells. These are read as “1”. A hard read 1 detects not completely
programmed cells. These are read as “0”. Read margin changes are caused by the
command sequence “Change Read Margin”. The resulting read margin is reflected in
this status register.

The command sequences “Program Page”, “Erase Sector”, “Erase Page” and “Erase
Security Page” resets the read margin back to “normal”. The same happens in case of
a flash wake-up.

Reset by Application Reset.

User’s Manual 3-60 V1.0, 2007-06
MemoryX2K, V1.1

.. XC2000 Derivatives
@"1% System Units (Vol. 1 of 2)

Preliminary Memory Organization
IMB_MAR
Margin Control ISFR (FF FFOCy) Reset value: 00004
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
- - - - - - - HREAD2 HREAD1 HREADO
— — — — — — — “Th T T
Field Bits Typ | Description
HREADO [2:0] rh |Hard Read O

Active read margin of flash module 0.

“000”:Normal read.

“001":Hard read O.

“010": Alternate hard read 0 (usually harder than
001).

“101":Hard read 1.

“110": Alternate hard read 1 (usually harder than

101).
other codes:Reserved.
HREAD1 [5:3] |rh |Hard Read 1
Same for flash module 1.
HREAD?2 [8:6] rh |Hard Read 2

Same for flash module 2.

Protection Configuration

Protection configuration register of each implemented flash module. In XC2000
PROCONO, PROCON1 and PROCONZ2 are implemented. PROCONO is described
below. PROCONL1 (at address FF'0012,) and PROCON2 (at address FF'F014,,) have
the same functionality for the other two flash modules. The logical sector numbering is
depicted in Figure 3-6.

Each bit of the PROCON:Ss is related to a logical sector. If it is cleared the write access to
the corresponding logical sector (this means to the range of physical sectors) is locked
under the conditions that are documented in “Protection Handling Details” on
Page 3-38. The PROCON registers are exclusively modified by the IMB Core.

Reset by Application Reset.

User’s Manual 3-61 V1.0, 2007-06
MemoryX2K, V1.1

@ineon
-

XC2000 Derivatives
System Units (Vol. 1 of 2)

Preliminary

IMB_PROCONX (x=0-2)

Protection Configuration.

ISFR (FF FF10,+2*X)

Memory Organization

Reset value: 00004

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
- - - - - — |S9U | S8U | S7U | S6U | S5U | S4U | S3U | S2U | S1U | SOU
- - - - - - rh rh rh rh rh rh rh rh rh rh
Field Bits Typ | Description
SsU (s=0-9) S rh | Sector 0to 9 Unlock
S: Logical sector s of flash module 0 is write-
protected.
User’s Manual 3-62 V1.0, 2007-06

MemoryX2K, V1.1

.. XC2000 Derivatives
@"1% System Units (Vol. 1 of 2)

Preliminary Memory Organization

3.10.2.2 System Control Registers
These registers are used to wakeup and shutdown parts of the memory sub-system.

Table 3-8 Registers Address Space
Module Base Address End Address Note
SCU 0000y OFFFy SCU Module

Table 3-9 Registers Overview

Register Short | Register Long Name Offset Page Number
Name Address

MEM_KSCCFG | Memory Kernel Control FO124 Page 3-63
FL_KSCCFG Flash Kernel Control FE224 Page 3-64

Memory Kernel Configuration

This register controls the shutdown request of the processor sub-system units DMU,
PMU, IMB and EBC (see “Processor Sub-System Shutdown” on Page 3-67). The
layout of this register is identical to the other KSCCFGs but only the field COMCFG may
be used. Two values of this field might be used: 00g means that the “Clock-off Mode”
does not trigger a shutdown of the processor sub-system. This may be used only if the
system clock of DMP_1 is not disabled in the “Clock-off Mode”.

The second useful value is 10g. This value must be used in all cases when the “Clock-
off Mode” is accompanied by disabling the system clock of the DMP_1. In this case the
sequence described in “Processor Sub-System Shutdown” on Page 3-67 must be
performed.

This register gets is reset by an Application Reset. Attention: the reset value of
COMCEFG is 00g.

MEM_KSCCFG

Memory Kernel State Con ESFR (F012,/06) Reset Value: 00014
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
BP

coml — | COMCFG | — | - - - | - - - - |1
w - rw - - - - - - - - rw

Field Bits Type |Description

1 0 rw Has to be written to 1.

User’s Manual 3-63 V1.0, 2007-06

MemoryX2K, V1.1

.. XC2000 Derivatives
@"1% System Units (Vol. 1 of 2)

Preliminary Memory Organization
Field Bits Type |Description
COMCFG [13:12] | rw Clock Off Mode Configuration

This bit field defines if the shutdown request is
activated in clock-off mode.

If COMCFGJ13] is 1 the shutdown request is
activated in clock-off mode (i.e. CR = 10).
COMCFG[12] has no functionality.

BPCOM 15 w Bit Protection for COMCFG

This bit enables the write access to the bit field

COMCEFG. It always reads 0. It is only active during

the write access cycle.

0 The bit field COMCFG is not changed.

1 The bit field COMCFG is updated with the
written value.

Flash Kernel Configuration

This register controls the power-down request of the flash module. When configuring this
register care must be taken not to enable a powered-down flash module when the
operating voltage is not sufficient. In this case all CFG fields should contain 10g.

This register is reset by an Application Reset.

FL_KSCCFG
Flash Kernel State Con. SFR (FE22,/11R) Reset Value: 00014
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| | BP
BP BP BP MOD
coml ~ COMCFG suml ~ SUMCFG Nom!l ~ NOMCFG - ME?\]D EN
w - I‘\‘N W - I‘\‘N w - I’\IN - w r'w
Field Bits Type |Description
MODEN 0 rw Module Enable

This bit can directly set the power-down request.
0 The power-down request is activated.
1 This field has no effect.

User’s Manual 3-64 V1.0, 2007-06
MemoryX2K, V1.1

@ineon
-

XC2000 Derivatives
System Units (Vol. 1 of 2)

Preliminary

Memory Organization

Field

Bits

Type

Description

BPMODEN

Bit Protection for MODEN

This bit enables the write access to the bit MODEN.

It always reads 0. It is only active during the write

access cycle.

0 The bit MODEN is not changed.

1 The bit MODEN is updated with the written
value.

NOMCFG

[5:4]

rw

Normal Operation Mode Configuration

This bit field defines if the power-down request is
activated in normal operation mode.

If NOMCFGJ5] is 1 the power-down request is
activated in normal mode (i.e. CR = 00 or 11).
NOMCFGJ4] has no functionality.

BPNOM

Bit Protection for NOMCFG

This bit enables the write access to the bit field

NOMCEFG. It always reads 0. It is only active during

the write access cycle.

0 The bit field NOMCFG is not changed.

1 The bit field NOMCFG is updated with the
written value.

SUMCFG

[9:8]

rw

Suspend Mode Configuration

This bit field defines if the power-down request is
activated in suspend mode (which makes only sense
if it is activated in normal mode as well).

If SUMCFGI9] is 1 the power-down request is
activated in shutdown mode (i.e. CR = 01).
SUMCFG]I8] has no functionality.

BPSUM

11

Bit Protection for SUMCFG

This bit enables the write access to the bit field

SUMCEFG. It always reads O. It is only active during

the write access cycle.

0 The bit field SUMCFG is not changed.

1 The bit field SUMCFG is updated with the
written value.

User’s Manual
MemoryX2K, V1.1

3-65 V1.0, 2007-06

@ineon
-

XC2000 Derivatives
System Units (Vol. 1 of 2)

Preliminary Memory Organization

Field Bits Type |Description

COMCFG [13:12] | rw Clock Off Mode Configuration
This bit field defines if the power-down request is
activated in clock-off mode.
If COMCFGJ13] is 1 the power-down request is
activated in clock-off mode (i.e. CR = 10).
COMCFG[12] has no functionality.

BPCOM 15 w Bit Protection for COMCFG

This bit enables the write access to the bit field

COMCEFG. It always reads 0. It is only active during

the write access cycle.

0 The bit field COMCFG is not changed.

1 The bit field COMCFG is updated with the
written value.

User’s Manual
MemoryX2K, V1.1

3-66 V1.0, 2007-06

.. XC2000 Derivatives
@'neﬂ System Units (Vol. 1 of 2)

Preliminary Memory Organization

3.10.3 Startup, Shutdown

This section describes only shortly the shutdown and wake-up of the memory and
processor sub-system. The use of this functionality is delicate and should be done with
a software low-level driver according to Infineon recommendations.

3.10.3.1 Processor Sub-System Shutdown

The IMB with its memories PSRAM and the Flash memory is — from a programmers
point of view — part of the processor sub-system. This contains additionally the CPU
with its memories, the DMU, the PMU, and the EBC. All these modules must be active
(i.,e. have a sufficient power supply and a running clock) to execute software.
Consequently, their shutdown is controlled by a common KSCCFG called
MEM_KSCCFG (see Page 3-63).

Before stopping the system clock or performing a power mode change the complete
processor sub-system must be shutdown cleanly. This requires the following steps:

« The CPU executes the IDLE instruction. This instruction cleans up the processor
pipeline and the CPU stops fetching instructions. After that the idle state is reported
to the system control unit specifically the PSC (see “ Power State Controller (PSC)”
on Page 6-128).

e The PSC must be configured so that — triggered by the IDLE — it performs a
sequence A transition. The sequence A entry triggers the “Clock-off Mode” request
by the GSC.

» The MEM_KSCCFG.COMCFG must be set to 10g so that the “Clock-off Mode”
request of the GSC activates the shutdown request of the processor sub-system
modules DMU, PMU, IMB and EBC. These acknowledge the request after finishing
all outstanding tasks.

* The PSC can after that disable the system clock of DMP_1.

The system control unit must not be configured to disable the system clock without
performing this sequence. The danger is that the clock is switched off before the last
tasks of the processor sub-system have finished. Mainly affected are the following longer
lasting tasks:

* Write accesses to the PSRAM: the last write access could be dropped.

» Longer lasting processes in the Flash (e.g. erase sector, program page, ...).

* Write accesses via the EBC (e.g. to slow external memories): switching off the clock
while the external bus is active could even lead to timing violations at external
memories with loss of data.

The details of the registers MEM_KSCCFG and the FL_KSCCFG are described in
“System Control Registers” on Page 3-63.

User’s Manual 3-67 V1.0, 2007-06
MemoryX2K, V1.1

.. XC2000 Derivatives
@'neﬂ System Units (Vol. 1 of 2)

Preliminary Memory Organization

3.10.3.2 Flash Module Power-Down

Before the power supply voltage of the IMB is reduced below 1.5 V the flash arrays must
be powered down. The SCU controls the flash power-down with a dedicated kernel state
control register, the FL_KSCCFG. The flash power-down is requested by the SCU when
FL_KSCCFG.MODEN is 0 (the flash is disabled) or in case of a global clock-off mode
when the field FL_ KSCCFG.COMCFG contains “10” or “11”. If the MSB of the SUMCFG
or NOMCFG is 1 the flash power-down can also be requested in normal mode or
suspend mode.

A power-down request by the SCU is forwarded by the IMB Core to all flash modules.
The rest of the IMB is not affected by a flash power-down. So the device can continue
operation with the PSRAM. The IMB Core waits until all running processes have finished
in the flash modules before it acknowledges the power-down request. If the IMB Core
has received the beginning of a command sequence and is waiting for the rest when
receiving the power-down request it resets it command interpreter and performs a
“Reset to Read”. All accesses arriving after or with the power down request are ignored
(read accesses return default data as defined for not-implemented memory ranges —
see Table 3-10 “IMB Error Reporting” on Page 3-69). Accesses arriving after or with
a power down request should be considered as system control failure. Either the SCU
hardware or its low-level drivers must ensure that this case does not happen.

User’s Manual 3-68 V1.0, 2007-06
MemoryX2K, V1.1

@ineon
-

XC2000 Derivatives
System Units (Vol. 1 of 2)

Preliminary

3.10.4 Error Reporting Summary

Memory Organization

The Table 3-10 summarizes the types of detected errors and the possible reactions.

Table 3-10 IMB Error Reporting

Error

Reaction

Data read from PSRAM with parity error.

If PECON.PEENPS:
HW trap (see Section 3.12).

Instruction fetch from PSRAM with parity
error.

If PECON.PEENPS:
HW trap (see Section 3.12).

Data read from flash memory with single bit
error.

Silently corrected. Bit IMB_FSR.DSBER
set.

Data read from flash memory with double
bit error.

Bit IMB_FSR.DDBER set.

If IMB_INTCTR.DDDTRP = 0:

Flash access trap (see Section 6.11.4)
and default data is delivered.

Instruction fetch from flash memory with
single bit error.

Silently corrected. Bit IMB_FSR.ISBER
set.

Instruction fetch from flash memory with
double bit error.

Bit IMB_FSR.IDBER set.

If IMB_INTCTR.DIDTRP = O:

“TRAP 154" delivered instead of corrupted
data.

Data read from protected flash memory.

IMB_FSR.PROER set.

If IMB_INTCTR.DPROTRP = 0:

Flash access trap (see Section 6.11.4)
and default data is delivered.

Instruction fetch from protected flash
memory.

“TRAP 15p” delivered.

Program/erase request of write protected
flash range.

Only bit PROER in IMB_FSR set.

Data read or instruction fetch from busy
flash memory.

Read access stalled until end of busy
state.

Instruction fetch from ISFR addresses.

Default data (“TRAP 15p") delivered.

Data read from not implemented ISFRs.

Default data delivered.

Data writes to not implemented ISFRs.

Silently ignored.

Data read from not implemented address
range.

Unpredictable. Mirrored data from other
memories might be returned or default
values.

User’s Manual
MemoryX2K, V1.1

3-69

V1.0, 2007-06

@ineon
-

XC2000 Derivatives
System Units (Vol. 1 of 2)

Preliminary

Table 3-10

IMB Error Reporting (cont'd)

Memory Organization

Error

Reaction

Instruction fetch from not implemented
address range.

Unpredictable. Mirrored data from other
memories might be returned or default
values.

Data written to not implemented PSRAM or
write protected PSRAM address range
(both determined by
IMB_IMBCTR.PSPROT).

Bit IMB_INTCTR.PSER set.
Flash access trap (see Section 6.11.4)
and no data is changed in the PSRAM.

Program or erase command targeting not
implemented flash memory.

Unpredictable. Access is ignored or

mirrored into implemented flash

memory?b.

Data read from powered-down flash
modules.

Considered as access to not-implemented
memory range. Default data or data from
implemented flash modules will be
returned.

Instruction fetch from powered-down flash
modules.

Considered as access to not-implemented
memory range. Default data (“TRAP 155")
will be returned or data from implemented
flash modules.

Program or erase command targeting
powered-down flash modules.

Silently ignored.

Shutdown or power-down request received
while the command sequence interpreter is
waiting for the last words of a command
sequence.

The command interpreter is reset and a
“Reset to Read” command sequence is
executed.

1

3.11 Data Retention Memories

The flash protection can not be by-passed by accessing the reserved memory ranges.

This section describes the usage of the two special purpose data memories Stand-By
RAM (SBRAM) and Marker Memory (MKMEM). Both are supplied by the wake-up power
domain (DMP_M) and retain their data while the system power domain (DMP_1) is
switched off.

User’s Manual 3-70

MemoryX2K, V1.1

V1.0, 2007-06

.. XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)

Preliminary Memory Organization

3.11.1 Stand-By RAM Accesses

The SBRAM is not mapped into the address range of the processor. All accesses are
done via the 4 SFRs SBRAM_WADD, SBRAM_RADD, SBRAM_DATAO and
SBRAM_DATAL. The following access options exist:

Write without automatic increment of the write address pointer:

The SW has to write the target address first to WADD and then the data to DATAO.
The data written to DATAQO is transferred to the indicated address in the SBRAM if (at
least) the lower byte of DATAO is written. If DATAO is written again the same address
in SBRAM is used for data storage. Bit WADD.MOD is cleared by a write access to
DATAO.

Write with automatic increment of the write address pointer:

The SW has to write the first target address to WADD and thereafter the data block
can be written word by word to DATAL. The data written to DATAL is transferred to
the indicated address in the SBRAM if (at least) the lower byte of SRDRL1 is written.
In parallel to the data storage in the SBRAM, the write address pointer WADD.WPTR
is automatically incremented by 1 (one word) for the next data to be stored. The
address pointer automatically does a wrap-around after reaching its maximum value
and in this case, bit WADD.WA is set. Bit WADD.MOD is set by a write access to
DATAL.

Read without automatic increment of the read address pointer:

The SW has to write the target address first to RADD and then can read the data from
DATAO. If DATAO is read again the same address in SBRAM is read out. Bit
RADD.MOD is cleared by a read access to DATAO.

Read with automatic increment of the read address pointer:

The SW has to write the first target address to RADD and can then read the data
block word by word from DATAL. In parallel to the read action from SBRAM, the read
address pointer RADD.RPTR is automatically incremented by 1 (one word) for the
next data to be read. The address pointer automatically does a wrap-around after
reaching its maximum value and in this case, bit RADD.WA is set. Bit RADD.MOD is
set by a read access to DATAL.

The automatic increment accesses allow performing back-to-back data writes and
reads.

Note: Because read accesses to SBRAM_DATAO and SBRAM_DATAI1 return the value

that has been pre-read upon the most recent update of register SBRAM_RADD,
any data written to location @SBRAM_RADD can only be read back after
SBRAM_RADD has been updated with the very same address (either explicitly by
writing to it or implicitly via the auto-increment function). Generally when switching
from write to read accesses SBRAM_RADD should be written again before
reading SBRAM_DATAX.

User’s Manual 3-71 V1.0, 2007-06
MemoryX2K, V1.1

.. XC2000 Derivatives
@"1% System Units (Vol. 1 of 2)

Preliminary Memory Organization

3.11.2 Stand-By RAM Registers
This section describes the SBRAM register interface in detail.

3.11.2.1 SBRAM Read Address Register

This register defines the word location to be read.
Reset by Power-On Reset.

SBRAM_RADD

SBRAM Read Address Register SFR (FEDCR/6ER) Reset Value: 00004
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MOD| WA 0 RPTR 0
rwh rwh ‘r | rwh | r

Field Bits Type |Description

RPTR [9:1] rwh Read Pointer

Selects the word address to be read from the
SBRAM. It is automatically incremented by 1 (i.e. to
the next word) when register DATAL is read.

WA 14 rwh Wrap Around

This bit indicates if a wrap-around of the read pointer

RPTR occurred due to the automatic address

increment.

0 An address wrap-around has not occurred.

1 An address wrap-around has been detected. It
has to be cleared by SW.

MOD 15 rwh Modification

This bit indicates whether the last read access to

SBRAM data lead to an automatic increment of

RPTR.

0 The last data read access was done to DATAO
and RPTR was not modified automatically.

1 The last data read access was done to DATAL
and RPTR was automatically incremented by

1.
0 0, r Reserved
[13:10] Read as 0; should be written with O.
User’s Manual 3-72 V1.0, 2007-06

MemoryX2K, V1.1

@ineon
-

XC2000 Derivatives
System Units (Vol. 1 of 2)

Preliminary

Memory Organization

3.11.2.2 SBRAM Write Address Register

This register defines the word location to be written.
Reset by Power-On Reset.

SBRAM_WADD

SBRAM Write Address Register SFR (FEDE/6FR)

15 14

13

12

11 10

Reset Value: 00004

9 8 7 6 5 4 3 2 1 0

MOD| WA

I I
0

rwh rwh

r

Field

Bits

Type

Description

WPTR

[9:1]

rwh

Write Pointer

Selects the write word address within the SBRAM.
Itis automatically incremented by 1 if register DATAL
is written.

WA

14

rwh

Wrap-Around

This bit indicates if a wrap-around of the write pointer

WPTR occurred due to the automatic address

increment.

0 An address wrap-around has not occurred.

1 An address wrap-around has been detected. It
has to be cleared by SW.

MOD

15

rwh

Modification

This bit indicates whether the last write access to

SBRAM data lead to an automatic increment of

WPTR.

0 The last data write access was done to DATAO
and WPTR was not modified automatically.

1 The last data write access was done to DATA1
and WPTR was automatically incremented by
1.

0,
[13:10]

Reserved
Read as 0O; should be written with O.

User’s Manual

MemoryX2K, V1.1

3-73 V1.0, 2007-06

.. XC2000 Derivatives
@"1% System Units (Vol. 1 of 2)

Preliminary Memory Organization

3.11.2.3 SBRAM Data Register 0

This register delivers the read data and is the target for the write data without
modification of the respective address pointer.

Reset by Power-On Reset.

SBRAM_DATAO
SBRAM Data Register 0 SFR (FEEOW/70y) Reset Value: 00004

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA
rwh
Field Bits Type |Description
DATA [15:0] |rwh SBRAM Data

This bit field contains the data read during the latest
SBRAM read access and is the target for the data to
be written to SBRAM.

A read access always delivers the data stored in the
SBRAM at the address indicated by the read pointer
RADD.RPTR.

A write access of (at least) the low byte leads to the
storage of the written data at the address indicated
by the write pointer WADD.WPTR.

User’s Manual 3-74 V1.0, 2007-06
MemoryX2K, V1.1

.. XC2000 Derivatives
@"1% System Units (Vol. 1 of 2)

Preliminary Memory Organization

3.11.2.4 SBRAM Data Register 1

This register delivers the read data and is the target for the write data with modification
of the respective pointer.

Reset by Power-On Reset.

SBRAM_DATA1

SBRAM Data Register 1 SFR (FEE2./71y) Reset Value: 00004
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA
rwh
Field Bits Type |Description
DATA [15:0] |rwh SBRAM Data

This bit field contains the data read during the latest
SBRAM read access and is the target for the data to
be written to SBRAM.

A write access of (at least) the low byte leads to the
storage of the written data at the address indicated
by the write pointer WADD.WPTR.

A read access always delivers the data stored in the
SBRAM at the address indicated by the read pointer
RADD.RPTR.

User’s Manual 3-75 V1.0, 2007-06
MemoryX2K, V1.1

.. XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)

Preliminary Memory Organization

3.11.3 Marker Memory (MKMEM)

The marker memory simply consists of two SFRs located in the DMP_M power domain
for free usage of the SW.

3.11.3.1 Marker Memory SFR

Reset by Power-On Reset.

MKMEMO
Marker Memory 0 Register SFR (FEDORL/68) Reset Value: 00004
MKMEM1
Marker Memory 1 Register SFR (FED24/69y) Reset Value: 00004

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MARKER
| r\IN |
Field Bits Type |Description
MARKER [15:0] |rw Marker Content
User’s Manual 3-76 V1.0, 2007-06

MemoryX2K, V1.1

.. XC2000 Derivatives
@"1% System Units (Vol. 1 of 2)

Preliminary Memory Organization

3.12 Memory Parity Error Handling

The on-chip RAM modules check parity information during read accesses and generate
parity bits during write accesses. A parity error is noted in the register bits PECON.PEFx
separately for each implemented memory.

If enabled by the register bits PECON.PEENXx the setting of a PECON.PEFx bit can
trigger a trap request. As documented in “SCU Trap Generation” on Page 6-200 by
default the requested trap is the ACER trap.

In order to handle the case that the ACER trap handler code itself incurrs a parity error
a reset can be triggered. If the bit TFR.ACER is set which indicates that the ACER trap
handler code is executed a parity error trap request triggers the reset action defined by
RSTCON1.MP.

User’s Manual 3-77 V1.0, 2007-06
MemoryX2K, V1.1

@ineon
-

XC2000 Derivatives
System Units (Vol. 1 of 2)

Preliminary

3.12.1

Memory Organization

Parity Control Registers

The register PECON controls the functional parity check mechanism.

This register is reset by a System Reset. An Application Reset clears only the enable bits
PEENX but not the error flags PEFx.

PECON

Parity Error Control Register

ESFR (FOC4./41y) Reset Value: 00004

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PEF | PEF | PEF | PEF | PEF | PEF | PEF |PEF | L= | PE | PE | PE | PE 1 PE | PE | PE
SB | MC | U2 | Ul | UO | PS|DS | DP EN | EN | EN 1 EN | EN | EN | EN | EN
SB|MC| U2 | Ul | UO|PS|DS | DP
rwh rwh rwh rwh rwh rwh rwh rwh w ™w ™w ™w w rw rw rw
Field Bits Type |Description
PEENDP 0 rw Parity Error Trap Enable for Dual Port Memory
0 No Parity trap is requested for dual port
memory parity errors
1 A Parity trap is requested for dual port memory
parity errors
PEENDS 1 rw Parity Error Trap Enable for Data SRAM
0 No Parity trap is requested for data SRAM
parity errors
1 A Parity trap is requested for data SRAM parity
errors
PEENPS 2 rw Parity Error Trap Enable for Program SRAM
0 No Parity trap is requested for program SRAM
parity errors
1 A Parity trap is requested for program SRAM
parity errors
PEENUO 3 rw Parity Error Trap Enable for USICO Memory
0 No Parity trap is requested for USICO memory
parity errors
1 A Parity trap is requested for USICO memory
parity errors
PEENU1 4 rw Parity Error Trap Enable for USIC1 Memory
0 No Parity trap is requested for USIC1 memory
parity errors
1 A Parity trap is requested for USIC1 memory
parity errors

User’s Manual

MemoryX2K, V1.1

3-78 V1.0, 2007-06

@ineon
-

XC2000 Derivatives
System Units (Vol. 1 of 2)

Preliminary Memory Organization
Field Bits Type |Description
PEENU2 5 rw Parity Error Trap Enable for USIC2 Memory
0 No Parity trap is requested for USIC2 memory
parity errors
1 A Parity trap is requested for USIC2 memory
parity errors
PEENMC 6 rw Parity Error Trap Enable for MultiCAN Memory
0 No Parity trap is requested for MultiCAN
memory parity errors
1 A Parity trap is requested for MultiCAN
memory parity errors
PEENSB 7 rw Parity Error Trap Enable for Standby Memory
0 No Parity trap is requested for Standby
memory parity errors
1 A Parity trap is requested for Standby memory
parity errors
PEFDP 8 rwh Parity Error Flag for Dual Port Memory
0 No Parity errors have been detected for dual
port memory
1 A Parity error is indicated and can trigger a trap
request trigger, if enabled for dual port memory
The bit is only set by the enabled parity error from the
dual port memory. This bit can only be cleared via
SW.
Writing a zero to this bit does not change the content.
Writing a one to this bit does clear the bit.
PEFDS 9 rwh Parity Error Flag for Data SRAM

0 No Parity errors have been detected for data
SRAM

1 A Parity error is indicated and can trigger a trap
request trigger, if enabled for data SRAM

The bitis only set by the enabled parity error from the

data SRAM. This bit can only be cleared via SW.

Writing a zero to this bit does not change the content.

Writing a one to this bit does clear the bit.

User’s Manual
MemoryX2K, V1.1

3-79 V1.0, 2007-06

@ineon
-

XC2000 Derivatives
System Units (Vol. 1 of 2)

Preliminary

Memory Organization

Field Bits

Type

Description

PEFPS 10

rwh

Parity Error Flag for Program SRAM

0 No Parity errors have been detected for
program SRAM

1 A Parity error is indicated and can trigger a trap
request trigger, if enabled for program SRAM

The bit is only set by the enabled parity error from the

program SRAM. This bit can only be cleared via SW.

Writing a zero to this bit does not change the content.

Writing a one to this bit does clear the bit.

PEFUO 11

rwh

Parity Error Flag for USICO Memory

0 No Parity errors have been detected for USICO
memory

1 A Parity error is indicated and can trigger a trap
request trigger, if enabled for USICO memory

The bit is only set by the enabled parity error from the

USICO memory. This bit can only be cleared via SW.

Writing a zero to this bit does not change the content.

Writing a one to this bit does clear the bit.

PEFU1 12

rwh

Parity Error Flag for USIC1 Memory

0 No Parity errors have been detected for USIC1
memory

1 A Parity error is indicated and can trigger a trap
request trigger, if enabled for USIC1 memory

The bit is only set by the enabled parity error from the

USIC1 memory. This bit can only be cleared via SW.

Writing a zero to this bit does not change the content.

Writing a one to this bit does clear the bit.

PEFU2 13

rwh

Parity Error Flag for USIC2 Memory

0 No Parity errors have been detected for USIC2
memory

1 A Parity error is indicated and can trigger a trap
request trigger, if enabled for USIC2 memory

The bit is only set by the enabled parity error from the

USIC2 memory. This bit can only be cleared via SW.

Writing a zero to this bit does not change the content.

Writing a one to this bit does clear the bit.

User’s Manual
MemoryX2K, V1.1

3-80 V1.0, 2007-06

@ineon
-

XC2000 Derivatives
System Units (Vol. 1 of 2)

Preliminary

Memory Organization

Field

Bits

Type

Description

PEFMC

14

rwh

Parity Error Flag for MultiCAN Memory

0 No Parity errors have been detected for
MultiCAN memory

1 A Parity error is indicated and can trigger a trap
request trigger, if enabled for MultiCAN
memory

The bit is only set by the enabled parity error from the

MultiCAN memory. This bit can only be cleared via

SW.

Writing a zero to this bit does not change the content.

Writing a one to this bit does clear the bit.

PEFSB

15

rwh

Parity Error Flag for Standby Memory

0 No Parity errors have been detected for
Standby memory

1 A Parity error is indicated and can trigger a trap
request trigger, if enabled for Standby memory

The bit is only set by the enabled parity error from the

Standby memory. This bit can only be cleared via

SW.

Writing a zero to this bit does not change the content.

Writing a one to this bit does clear the bit.

User’s Manual
MemoryX2K, V1.1

3-81 V1.0, 2007-06

@ . .

: XC2000 Derivatives
Infineon :
v System Units (Vol. 1 of 2)

Preliminary Memory Organization

User’s Manual 3-82 V1.0, 2007-06
MemoryX2K, V1.1

'T XC2000 Derivatives
Infineon :

Q T System Units (Vol. 1 of 2)
Preliminary Central Processing Unit (CPU)

4 Central Processing Unit (CPU)

Basic tasks of the Central Processing Unit (CPU) are to fetch and decode instructions,
to supply operands for the Arithmetic and Logic unit (ALU) and the Multiply and
Accumulate unit (MAC), to perform operations on these operands in the ALU and MAC,
and to store the previously calculated results. As the CPU is the main engine of the
XC2000 microcontroller, it is also affected by certain actions of the peripheral
subsystem.

Because a five-stage processing pipeline (plus 2-stage fetch pipeline) is implemented in
the XC2000, up to five instructions can be processed in parallel. Most instructions of the
XC2000 are executed in one single clock cycle due to this parallelism.

This chapter describes how the pipeline works for sequential and branch instructions in
general, and the hardware provisions which have been made to speed up execution of
jump instructions in particular. General instruction timing is described, including standard
timing, as well as exceptions.

While internal memory accesses are normally performed by the CPU itself, external
peripheral or memory accesses are performed by a particular on-chip External Bus
Controller (EBC) which is invoked automatically by the CPU whenever a code or data
address refers to the external address space.

Whenever possible, the CPU continues operating while an external memory access is in
progress. If external data are required but are not yet available, or if a new external
memory access is requested by the CPU before a previous access has been completed,
the CPU will be held by the EBC until the request can be satisfied. The EBC is described
in a separate chapter.

The on-chip peripheral units of the XC2000 work nearly independently of the CPU with
a separate clock generator. Data and control information are interchanged between the
CPU and these peripherals via Special Function Registers (SFRS).

Whenever peripherals need a non-deterministic CPU action, an on-chip Interrupt
Controller compares all pending peripheral service requests against each other and
prioritizes one of them. If the priority of the current CPU operation is lower than the
priority of the selected peripheral request, an interrupt will occur.

There are two basic types of interrupt processing:

» Standard interrupt processing forces the CPU to save the current program status
and return address on the stack before branching to the interrupt vector jump table.

 PEC interrupt processing steals only one machine cycle from the current CPU
activity to perform a single data transfer via the on-chip Peripheral Event Controller
(PEC).

System errors detected during program execution (hardware traps) and external non-
maskable interrupts are also processed as standard interrupts with a very high priority.

User’s Manual 4-1 V1.0, 2007-06
CPUSV2 X, V2.2

.. XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)

Preliminary Central Processing Unit (CPU)

In contrast to other on-chip peripherals, there is a closer conjunction between the
watchdog timer and the CPU. If enabled, the watchdog timer expects to be serviced by
the CPU within a programmable period of time, otherwise it will reset the chip. Thus, the
watchdog timer is able to prevent the CPU from going astray when executing erroneous
code. After reset, the watchdog timer starts counting automatically but, it can be disabled
via software, if desired.

In addition to its normal operation state, the CPU has the following particular states:

* Reset state: Any reset (application or power) forces the CPU into a predefined active
state.

« Idle state: The clock signal to the CPU itself is switched off, while the clocks for the
on-chip peripherals may keep running.

Transition to an active CPU state is forced by an interrupt (if in IDLE or SLEEP mode) or
by a reset (if in POWER DOWN mode).

The IDLE, SLEEP, POWER DOWN, and RESET states can be entered by specific
XC2000 system control instructions.

A set of Special Function Registers is dedicated to the CPU core (CSFRs):

e CPU Status Indication and Control: PSW, CPUCON1, CPUCON2

» Code Access Control: IP, CSP

» Data Paging Control: DPPO, DPP1, DPP2, DPP3

* Global GPRs Access Control: CP

» System Stack Access Control: SP, SPSEG, STKUN, STKOV

* Multiply and Divide Support: MDL, MDH, MDC

* Indirect Addressing Offset: QRO, QR1, QX0, QX1

e MAC Address Pointers: IDX0, IDX1

 MAC Status Indication and Control: MCW, MSW, MAH, MAL, MRW
* ALU Constants Support: ZEROS, ONES

The CPU also uses CSFRs to access the General Purpose Registers (GPRs). Since all
CSFRs can be controlled by any instruction capable of addressing the SFR/CSFR
memory space, there is no need for special system control instructions.

However, to ensure proper processor operation, certain restrictions on the user access
to some CSFRs must be imposed. For example, the instruction pointer (CSP, IP) cannot
be accessed directly at all. These registers can only be changed indirectly via branch
instructions. Registers PSW, SP, and MDC can be modified not only explicitly by the
programmer, but also implicitly by the CPU during normal instruction processing.

Note: Note that any explicit write request (via software) to an CSFR supersedes a
simultaneous modification by hardware of the same register.

User’s Manual 4-2 V1.0, 2007-06
CPUSV2 X, V2.2

.. XC2000 Derivatives
@"1% System Units (Vol. 1 of 2)

Preliminary Central Processing Unit (CPU)

All CSFRs may be accessed wordwise, or bytewise (some of them even bitwise).
Reading bytes from word CSFRs is a non-critical operation. Any write operation to a
single byte of a CSFR clears the non-addressed complementary byte within the specified
CSFR.

Attention: Reserved CSFR bits must not be modified explicitly, and will always
supply a read value of 0. If a byte/word access is preferred by the
programmer or is the only possible access the reserved CSFR bits
must be written with 0 to provide compatibility with future versions.

User’s Manual 4-3 V1.0, 2007-06
CPUSV2 X, V2.2

. XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)

Preliminary Central Processing Unit (CPU)

4.1 Components of the CPU

The high performance of the CPU results from the cooperation of several units which are
optimized for their respective tasks (see Figure 4-1). Prefetch Unit and Branch Unit
feed the pipeline minimizing CPU stalls due to instruction reads. The Address Unit
supports sophisticated addressing modes avoiding additional instructions needed
otherwise. Arithmetic and Logic Unit and Multiply and Accumulate Unit handle
differently sized data and execute complex operations. Three memory interfaces and
Write Buffer minimize CPU stalls due to data transfers.

PMURN— PSRAM
Flash/ROM
CPU
prefetch | [csp| 1P ||| [vEcsEG | 2-Stage
Unit Prefetch
CPUCON1 TFR Pipeline
Branch CPUCON2
Unit Injection/ S'iﬁf,geﬁne DPRAM
Exception
Return Handler
FIFO
Stack IFU IPIP
IDX0 QRO DPPO SPSEG [cp |
IDX1 QR1 DPP1 SP () T
QX0 DPP2 STKOV RIS N [l | ==
QX1 DPP3 STKUN R14 M . R14
+/- +/- - GPRs] - - GPRs -
ADU | |} 414 | -
. ————— — RL H R1
Multiply | MRW | Division Unit | | Bit-Mask-Gen. =~ H- =)
Unit Multiply Unit Barrel-Shifter — _.-: | l
mcw || __mpc | RE
MSW PSW +/-
[mon || wmoL ||| F -
[man || wAL | - Buffer - DSRAM
| zeros || oneEs ||| F . EBC
MAC ALU WB Peripherals
DMU
mca04917_x.vsd

Figure 4-1 CPU Block Diagram

User’s Manual 4-4 V1.0, 2007-06
CPUSV2 X, V2.2

.. XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)

Preliminary Central Processing Unit (CPU)

In general the instructions move through 7 pipeline stages, where each stage processes
its individual task (see Section 4.3 for a summary):

» the 2-stage fetch pipeline prefetches instructions from program memory and stores
them into an instruction FIFO

» the 5-stage processing pipeline executes each instruction stored in the instruction
FIFO

Because passing through one pipeline stage takes at least one clock cycle, any isolated
instruction takes at least five clock cycles to be completed. Pipelining, however, allows
parallel (i.e. simultaneous) processing of up to five instructions (with branches up to six
instructions). Therefore, most of the instructions appear to be processed during one
clock cycle as soon as the pipeline has been filled once after reset.

The pipelining increases the average instruction throughput considered over a certain
period of time.

4.2 Instruction Fetch and Program Flow Control

The Instruction Fetch Unit (IFU) prefetches and preprocesses instructions to provide a
continuous instruction flow. The IFU can fetch simultaneously at least two instructions
via a 64-bit wide bus from the Program Management Unit (PMU). The prefetched
instructions are stored in an instruction FIFO.

Preprocessing of branch instructions enables the instruction flow to be predicted. While
the CPU is in the process of executing an instruction fetched from the FIFO, the
prefetcher of the IFU starts to fetch a new instruction at a predicted target address from
the PMU. The latency time of this access is hidden by the execution of the instructions
which have already been buffered in the FIFO. Even for a non-sequential instruction
execution, the IFU can generally provide a continuous instruction flow. The IFU contains
two pipeline stages: the Prefetch Stage and the Fetch Stage.

During the prefetch stage, the Branch Detection and Prediction Logic analyzes up to
three prefetched instructions stored in the first Instruction Buffer (can hold up to six
instructions). If a branch is detected, then the IFU starts to fetch the next instructions
from the PMU according to the prediction rules. After having been analyzed, up to three
instructions are stored in the second Instruction Buffer (can hold up to three instructions)
which is the input register of the Fetch Stage.

In the case of an incorrectly predicted instruction flow, the instruction fetch pipeline is
bypassed to reduce the number of dead cycles.

User’s Manual 4-5 V1.0, 2007-06
CPUSV2 X, V2.2

. XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)

Preliminary Central Processing Unit (CPU)
24-bit 64-bit
Address Data
W IFU Control | IFU Pipeline H
i Instruction Buffer (up to 6 Instr.) |
> csp ‘ ‘
+/- } IP - — -
I Branch Detection and Prediction Logic I
‘ ‘ Prefetch
Return Stack Stage
:D Instruction Buffer (up to 3 Instr.) [
> cpuconi Branch Folding
Unit o
> cpucon2 o S
b= @
(o]
. _ a
Control Registers Instruction 5 -
o} 2
FIFO o §
S s
Injection and Exception ﬂ ‘ ‘ i &
Handler 2 7
\ / g 2
> >
> vecsec| D TFR| I @ @ | Fetch
Stage
j> Instruction Buffer (up to 1 Instr.) |
u N N
Decode
Stage

MCA05501

Figure 4-2 IFU Block Diagram

On the Fetch Stage, the prefetched instructions are stored in the instruction FIFO. The
Branch Folding Unit (BFU) allows processing of branch instructions in parallel with
preceding instructions. To achieve this the BFU preprocesses and reformats the branch
instruction. First, the BFU defines (calculates) the absolute target address. This address
— after being combined with branch condition and branch attribute bits — is stored in
the same FIFO step as the preceding instruction. The target address is also used to
prefetch the next instructions.

For the Processing Pipeline, both instructions are fetched from the FIFO again and are
executed in parallel. If the instruction flow was predicted incorrectly (or FIFO is empty),
the two stages of the IFU can be bypassed.

Note: Pipeline behavior in case of a incorrectly predicted instruction flow is described in
the following sections.

User’s Manual 4-6 V1.0, 2007-06
CPUSV2 X, V2.2

.. XC2000 Derivatives
@'neﬂ System Units (Vol. 1 of 2)

Preliminary Central Processing Unit (CPU)

4.2.1 Branch Detection and Branch Prediction Rules

The Branch Detection Unit preprocesses instructions and classifies detected branches.
Depending on the branch class, the Branch Prediction Unit predicts the program flow
using the following rules:

Table 4-1 Branch Classes and Prediction Rules

Branch Instruction Classes |Instructions Prediction Rule (Assumption)
Inter-segment branch JMPS seg, caddr The branch is always taken
instructions CALLS seq, caddr
Branch instructions with JMPA- xcc, caddr | User-specified" via bit 8 (‘a’) of
user programmable branch JMPA+ xcc, caddr | the instruction long word:
prediction CALLA- xcc, caddr |...+: branch ‘taken’ (a = 0)
CALLA+ xcc, caddr | ...-: branch ‘not taken’ (a = 1)
Indirect branch instructions JMPI cc, [Rw] Unconditional: branch ‘taken’
CALLI cc, [Rw] Conditional: ‘not taken’
Relative branch instructions | JMPR cc, rel Unconditional or backward:
with condition code branch ‘taken’

Conditional forward: ‘not taken’

Relative branch instructions | CALLR rel The branch is always taken
without condition code

Branch instructions with bit- | JB(C) bitaddr, rel Backward: branch ‘taken’

condition JNB(S) bitaddr, rel | Forward: ‘not taken’
Return instructions RET, RETP The branch is always taken
RETS, RETI

1) This bit can be also set/cleared automatically by the Assembler for generic JIMPA and CALLA instructions
depending on the jump condition (condition is cc_Z: ‘not taken’, otherwise: ‘taken’).

4.2.2 Correctly Predicted Instruction Flow

Table 4-2 shows the continuous execution of instructions, assuming a O-waitstate
program memory. In this example, most of the instructions are executed in one CPU
cycle while instruction |1 ,, takes two CPU cycles (general example for multicycle
instructions). The diagram shows the sequential instruction flow through the different
pipeline stages. Figure 4-3 shows the corresponding program memory section.

The instructions for the processing pipeline are fetched from the Instruction FIFO while
the IFU prefetches the next instructions to fill the FIFO. As long as the instruction flow is
correctly predicted by the IFU, both processes are independent.

In this example with a fast Internal Program Memory, the Prefetcher is able to fetch more
instructions than the processing pipeline can execute. In T,,,, the FIFO and prefetch
buffer are filled and no further instructions can be prefetched. The PMU address stays

User’s Manual 4-7 V1.0, 2007-06
CPUSV2 X, V2.2

.. XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)

Preliminary Central Processing Unit (CPU)

stable (T,.,,) until a whole 64-bit double word can be buffered (T,,) in the 96-bit prefetch
buffer again.

Table 4-2 Correctly Predicted Instruction Flow (Sequential Execution)

Tn Tn+1 Tn+2 Tn+3 Tn+4 Tn+5 Tn+6 Tn+7 Tn+8
PMU Address | laii |laroa |larse |larao |lavao |lavao |lavao |lavas | lavss
PMU Data 64bit Id+1 Id+2 Id+3 Id+4 Id+5 Id+5 Id+5 Id+5 Id+7
PREFETCH In+6 In+9 In+12 In+14 In+15 In+15 In+16 In+17 In+18
96-bit Buffer i1z | lhe1s

In+9 In+11 In+19 In+19 In+19 In+19 In+21
FETCH_ In+5 In+6 In+9 In+12 In+14 - In+15 In+16 In+17
Instruction l47 le1o | lhe1s
Buffer l+s lhe11
FIFO contents | I,,3 (R l+5 I+ ls7 l47 I+ I+ lh+10

In+5 In+8 In+11 In+13 In+14 In+14 In+15 In+16 In+17
Fetchfrom FIFO 1., |lus [lwe |ler [l Ilig lwe | lio |less
DECODE In+3 In+4 In+5 In+6 In+6 In+7 In+8 In+9 In+10
ADDRESS In+2 In+3 In+4 In+5 In+6 In+6 In+7 In+8 In+9
MEMORY P O 1 PV P AP I S B
EXECUTE I, P O e U PR SOV | SV
WRITE BACK |- I, D O O P P L P
User’s Manual 4-8 V1.0, 2007-06

CPUSV2_X, V2.2

.. XC2000 Derivatives
@'neﬂ System Units (Vol. 1 of 2)

Preliminary Central Processing Unit (CPU)

n+21 n+21 n+20 n+20

A

a+40

n+19 n+18 n+17 n+16

A

a+32

n+16 n+15 n+15 n+14

A

at24

n+14 n+13 n+12 n+12

A

a+16

n+11 n+11 n+10 n+10

A

a+8

n+9 n+8 n+7 n+6

a

A

MCA04918

Figure 4-3 Program Memory Section for Correctly Predicted Flow

4.2.3 Incorrectly Predicted Instruction Flow

If the CPU detects that the IFU made an incorrect prediction of the instruction flow, then
the pipeline stages and the Instruction FIFO containing the wrong prefetched instructions
are canceled. The entire instruction fetch is restarted at the correct point of the program.

Table 4-3 shows the restarted execution of instructions, assuming a O-waitstate program
memory. Figure 4-4 shows the corresponding program memory section.

During the cycle T,, the CPU detects an incorrectly prediction case which leads to a
canceling of the pipeline. The new address is transferred to the PMU in T,,; which
delivers the first data in the next cycle T,,,,. But, the target instruction crosses the 64-bit
memory boundary and a second fetch in T,,; is required to get the entire 32-bit
instruction. In T,,,, the Prefetch Buffer contains two 32-bit instructions while the first
instruction |, is directly forwarded to the Decode stage.

The prefetcher is now restarted and prefetches further instructions. In T,,s, the
instruction |, is forwarded from the Fetch Instruction Buffer directly to the Decode
stage as well. The Fetch row shows all instructions in the Fetch Instruction Buffer and
the instructions fetched from the Instruction FIFO. The instruction |5 is the first
instruction fetched from the FIFO during T,,¢. During the same cycle, instruction |, was
still forwarded from the Fetch Instruction Buffer to the Decode stage.

User’s Manual 4-9 V1.0, 2007-06
CPUSV2 X, V2.2

@ineon
-

XC2000 Derivatives
System Units (Vol. 1 of 2)

Preliminary Central Processing Unit (CPU)
Table 4-3 Incorrectly Predicted Instruction Flow (Restarted Execution)
Tn Tn+1 Tn+2 Tn+3 Tn+4 Tn+5 Tn+6 Tn+7 Tn+8
PMU Address | I... I, lsg lovig | lasoa |1 l... l... l...
PMU Data 64bit |I... - Iy lgs1 lgs2 lgs3 l... l... l...
PREFETCH l... - - - I (P lsa l... l...
96-bit Buffer le1 l43 les
FETCH lhexte2 | — - - - (o leo lsa l...
Instruction ez | Ines
Buffer
Fetch from FIFO | - - - - - - ez [lnsa | lmes
DECODE lnexte1 | = B B I |1 |2 |3 lm+a
ADDRESS lhext | — - - - I le1 le2 l+3
MEMORY Ibranch B B B B B Im Im+1 Im+2
EXECUTE Iy lbranch | — B B B B I lm+1
WRITE BACK |- l, loranch | — - - - - I
| Im+5 Im+5 I m+4 P |
| m+4 I m+3 Im+3 I m+2) e
< I,
Im+2 Im+1 Im+1 Im e
< I,
Im I l e
< I,
MCA04919
64-bit wide Program Memory with four 16 bit packages
Figure 4-4 Program Memory Section for Incorrectly Predicted Flow

User’s Manual
CPUSV2 X, V2.2

4-10

V1.0, 2007-06

.. XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)

Preliminary Central Processing Unit (CPU)

4.3 Instruction Processing Pipeline

The XC2000 uses five pipeline stages to execute an instruction. All instructions pass
through each of the five stages of the instruction processing pipeline. The pipeline stages
are listed here together with the 2 stages of the fetch pipeline:

1st -> PREFETCH: This stage prefetches instructions from the PMU in the predicted
order. The instructions are preprocessed in the branch detection unit to detect branches.
The prediction logic decides if the branches are assumed to be taken or not.

2nd -> FETCH: The instruction pointer of the next instruction to be fetched is calculated
according to the branch prediction rules. For zero-cycle branch execution, the Branch
Folding Unit preprocesses and combines detected branches with the preceding
instructions. Prefetched instructions are stored in the instruction FIFO. At the same time,
instructions are transported out of the instruction FIFO to be executed in the instruction
processing pipeline.

3rd -> DECODE: The instructions are decoded and, if required, the register file is
accessed to read the GPR used in indirect addressing modes.

4th -> ADDRESS: All the operand addresses are calculated. Register SP is
decremented or incremented for all instructions which implicitly access the system stack.

5th -> MEMORY:: All the required operands are fetched.

6th -> EXECUTE: An ALU or MAC-Unit operation is performed on the previously fetched
operands. The condition flags are updated. All explicit write operations to CPU-SFRs
and all auto-increment/auto-decrement operations of GPRs used as indirect address
pointers are performed.

7th -> WRITE BACK: All external operands and the remaining operands within the
internal DPRAM space are written back. Operands located in the internal SRAM are
buffered in the Write Back Buffer.

Specific so-called injected instructions are generated internally to provide the time
needed to process instructions requiring more than one CPU cycle for processing. They
are automatically injected into the decode stage of the pipeline, then they pass through
the remaining stages like every standard instruction. Program interrupt, PEC transfer,
and OCE operations are also performed by means of injected instructions. Although
these internally injected instructions will not be noticed in reality, they help to explain the
operation of the pipeline.

The performance of the CPU (pipeline) is decreased by bandwidth limitations (same
resource is accessed by different stages) and data dependencies between instructions.
The XC2000’'s CPU has dedicated hardware to detect and to resolve different kinds of
dependencies. Some of those dependencies are described in the following section.

Because up to five different instructions are processed simultaneously, additional
hardware has been dedicated to deal with dependencies which may exist between
instructions in different pipeline stages. This extra hardware supports ‘forwarding’ of the
operand read and write values and resolves most of the possible conflicts — such as

User’s Manual 4-11 V1.0, 2007-06
CPUSV2 X, V2.2

.. XC2000 Derivatives
@"1% System Units (Vol. 1 of 2)

Preliminary Central Processing Unit (CPU)

multiple usage of buses — in a time optimized way without performance loss. This
makes the pipeline unnoticeable for the user in most cases. However, there are some
rare cases in which the pipeline requires attention by the programmer. In these cases,
the delays caused by the pipeline conflicts can be used for other instructions to optimize
performance.

Note: The XC2000 has a fully interlocked pipeline, which means that these conflicts do
not cause any malfunction. Instruction re-ordering is only required for performance
reasons.

The following examples describe the pipeline behavior in special cases and give
principle rules to improve the performance by re-ordering the execution of instructions.

User’s Manual 4-12 V1.0, 2007-06
CPUSV2 X, V2.2

XC2000 Derivatives
System Units (Vol. 1 of 2)

@ineon
-

Preliminary

Central Processing Unit (CPU)

4.3.1

The GPRs are the working registers of the CPU and there are a lot of possible
dependencies between instructions using GPRs. A high-speed five-port register file
prevents bandwidth conflicts. Dedicated hardware is implemented to detect and resolve
the data dependencies. Special forwarding busses are used to forward GPR values from
one pipeline stage to another. In most cases, this allows the execution of instructions
without any delay despite of data dependencies.

Conflict_GPRs_Resol ved:

Pipeline Conflicts Using General Purpose Registers

I, ADD RO, R1 ; Comput e new val ue for RO
l .1 ADD R3, RO ; Use RO again
| +.» ADD R6, RO ; Use RO again
l .3 ADD R6, Rl ; Use R6 again
I n+4
Table 4-4 Resolved Pipeline Dependencies Using GPRs
Stage Tn Tn+1 Tn+2 Tn+3l) Tn+42) Tn+53)
DECODE |I,=ADD |I,,=ADD |l,,,=ADD |l,,3=ADD |l 4 l+5
RO, R1 R3, RO R6, RO R6, R1
ADDRESS |1, l,=ADD |I,,,=ADD |l,,,=ADD |l,.3=ADD |Il,,
RO, R1 R3, RO R6, RO R6, R1
MEMORY ||, (Y l,=ADD |I,,=ADD |I,,,=ADD |l,.3=ADD
RO, R1 R3, RO R6, RO R6, R1
EXECUTE |15 [[l,=ADD |I,,=ADD |I,,=ADD
RO, R1 R3, RO R6, RO
WR.BACK |l,.4 3 l-2 (Y l,=ADD |I,,; =ADD
RO, R1 R3, RO
1) RO forwarded from EXECUTE to MEMORY.
2) RO forwarded from WRITE BACK to MEMORY.
3) R6 forwarded from EXECUTE to MEMORY.
User’s Manual 4-13 V1.0, 2007-06

CPUSV2_X, V2.2

.. XC2000 Derivatives
@"]Eﬂ System Units (Vol. 1 of 2)

Preliminary Central Processing Unit (CPU)

However, if a GPR is used for indirect addressing the address pointer (i.e. the GPR) will
be required already in the DECODE stage. In this case the instruction is stalled in the
address stage until the operation in the ALU is executed and the result is forwarded to
the address stage.

Conflict_GPRs_Pointer_Stall:

I, ADD RO, R1 ; Comput e new val ue for RO
l ;1 MOV R3, [RO] ; Use RO as address pointer
| .o ADD R6, RO

| .3 ADD R6, Rl

I

n+4

Table 4-5 Pipeline Dependencies Using GPRs as Pointers (Stall)

Stage Tn Tn+1 Tn+21) Tn+32) Tn+4 Tn+5
DECODE |I,=ADD |l ,;=MOV |I,, lso lso lva
RO, R1 R3, [RO]
ADDRESS |1, l,=ADD |[l,,;=MOV |l ,,=MOV |I,,;=MOV |l ,,
RO, R1 R3,[RO] |R3,[RO] |R3,[RO]
MEMORY |1, |t l,=ADD |- -~ lhe1 = MOV
RO, R1 R3, [RO]
EXECUTE ||, | |1 |,=ADD |- —~
RO, R1
WR.BACK |1, |3 | |1 |,=ADD |-
RO, R1

1) New value of RO not yet available.
2) RO forwarded from EXECUTE to ADDRESS (next cycle).

User’s Manual 4-14 V1.0, 2007-06
CPUSV2 X, V2.2

.. XC2000 Derivatives
@'neﬂ System Units (Vol. 1 of 2)

Preliminary Central Processing Unit (CPU)

To avoid these stalls, one multicycle instruction or two single cycle instructions may be
inserted. These instructions must not update the GPR used for indirect addressing.

Conflict GPRs_Pointer NoStall:

N ADD RO, R1 ; Conmput e new val ue for RO
+1 ADD R6, RO ;RO is not updated, just read
ADD R6, R1

+

n+3 MOV R3, [RO] ; Use RO as address pointer

n+4

>
N

Table 4-6 Pipeline Dependencies Using GPRs as Pointers (No Stall)

Stage Tn Tn+1 Tn+2 Tn+3l) Tn+4 Tn+5
DECODE |I,=ADD |l,,;=ADD |l.,,=ADD |l ,;=MOV |l ., lss
RO, R1 R6, RO R6, R1 R3, [RO]
ADDRESS ||, |,=ADD |l ,,=ADD |l ,,=ADD |l ,,;=MOV |l ,
RO, R1 R6, RO R6, R1 R3, [RO]
MEMORY |1, |t l,=ADD |l,,;=ADD |l,,=ADD |l ,3=MOV
RO, R1 R6, RO R6, R1 R3, [RO]
EXECUTE ||, | |1 l|,=ADD |[l,,,=ADD |l ,=ADD
RO, R1 R6, RO R6, R1
WR.BACK |I, |3 lo |1 |,=ADD |I.,,,=ADD
RO, R1 R6, RO

1) RO forwarded from EXECUTE to ADDRESS (next cycle).

4.3.2 Pipeline Conflicts Using Indirect Addressing Modes

In the case of read accesses using indirect addressing modes, the Address Generation
Unit uses a speculative addressing mechanism. The read data path to one of the
different memory areas (DPRAM, DSRAM, etc.) is selected according to a history table
before the address is decoded. This history table has one entry for each of the GPRs.
The entries store the information of the last accessed memory area using the
corresponding GPR. In the case of an incorrect prediction of the memory area, the read
access must be restarted.

It is recommended that the GPRs used for indirect addressing always point to the same
memory area. If an updated GPR points to a different memory area, the next read
operation will access the wrong memory area. The read access must be repeated, which
leads to pipeline stalls.

User’s Manual 4-15 V1.0, 2007-06
CPUSV2 X, V2.2

@ineon
-

XC2000 Derivatives
System Units (Vol. 1 of 2)

Preliminary

Conflict_ GPRs_Poi nter WongHi story:

Central Processing Unit (CPU)

[ADD R3, [RO] ; RO points to DPRAM (e.g.)
l,+1 MWV RO, R4
I MOV DPPX, ; change DPPx
I ADD R6, [RO] ; RO now points to SRAM (e. g.)
l w1 MOV R6,R1
I mt2
Table 4-7 Pipeline Dependencies with Pointers (Valid Speculation)
Stage Tn Tn+1 Tn+2 Tn+3 Tn+4 Tn+5
DECODE |I,=ADD |l,,; =MOV |I,,» lhs3 l+a lss

R3, [RO] |RO, R4
ADDRESS ||, ; I, = ADD [+ =MOV || ,» l+3 lsa

R3, [RO] RO, R4
MEMORY ||, (Y I, = ADD lh+1 = MOV ||, ls3
R3, [RO] RO, R4
EXECUTE |l (I (Y I, = ADD l,+1=MOV ||,
R3, [RO] RO, R4
WR.BACK |I,4 I3 2 l1 I, = ADD l,+1 = MOV
R3, [RO] RO, R4

Table 4-8 Pipeline Dependencies with Pointers (Invalid Speculation)
Stage Tm Tm+l Tm+21) Tm+3 Tm+4 Tm+5
DECODE |I,=ADD |l,+;;=MOV |I,,;=MOV |l l43 lsa

R6, [RO] |R6, R1 R6, R1
ADDRESS ||, l,=ADD |I,=ADD |l,,;=MOV |l,.> les

R6, [RO] R6, [RO] R6, R1
MEMORY |1, lo1 - l,=ADD ||,,=MOV |l .,
R6, [RO] R6, R1
EXECUTE |I,.3 [0 la - l,=ADD |I,,;=MOV
R6, [RO] R6, R1
WR.BACK |I,.4 I3 l-2 (1 - l,, = ADD
R6, [RO]

1) Access to location [RO] must be repeated due to wrong history (target area was changed).
User’s Manual 4-16 V1.0, 2007-06

CPUSV2_X, V2.2

.. XC2000 Derivatives
@'neﬂ System Units (Vol. 1 of 2)

Preliminary Central Processing Unit (CPU)

4.3.3 Pipeline Conflicts Due to Memory Bandwidth

Memory bandwidth conflicts can occur if instructions in the pipeline access the same
memory area at the same time. Special access mechanisms are implemented to
minimize conflicts. The DPRAM of the CPU has two independent read/write ports; this
allows parallel read and write operation without delays. Write accesses to the DSRAM
can be buffered in a Write Back Buffer until read accesses are finished.

All instructions except the CoXXX instructions can read only one memory operand per
cycle. A conflict between the read and one write access cannot occur because the
DPRAM has two independent read/write ports. Only other pipeline stall conditions can
generate a DPRAM bandwidth conflict. The DPRAM is a synchronous pipelined
memory. The read access starts with the valid addresses on the address stage. The data
are delivered in the Memory stage. If a memory read access is stalled in the Memory
stage and the following instruction on the Address stage tries to start a memory read, the
new read access must be delayed as well. But, this conflict is hidden by an already
existing stall of the pipeline.

User’s Manual 4-17 V1.0, 2007-06
CPUSV2 X, V2.2

XC2000 Derivatives
System Units (Vol. 1 of 2)

@ineon
-

Preliminary

Central Processing Unit (CPU)

The CoXXX instructions are the only instructions able to read two memory operands per
cycle. A conflict between the two read and one pending write access can occur if all three
operands are located in the DPRAM area. This is especially important for performance
in the case of executing a filter routine. One of the operands should be located in the
DSRAM to guarantee a single-cycle execution of the CoXXX instructions.

Conflict DPRAM Bandw dt h:

Iy ADD opl, R1
l .1 ADD R6, RO
l ..o CoMAC [I DX0], [RO]
l 3 MOV R3, [RO]
I n+4
Table 4-9 Pipeline Dependencies in Case of Memory Conflicts (DPRAM)
Stage Tn Tn+1 Tn+2 Tn+3 Tn+41) Tn+5
DECODE I, = ADD l,+1 =ADD |l ., = ls3=MOV |l .4 (R
opl, R1 R6, RO CoMAC ... |RS3, [RO]
ADDRESS ||, 4 I, = ADD l,+1 =ADD |l ., = l,s3=MOV |l ,3=MOV
opl, R1 R6, RO CoMAC ... |R3, [RO] R3, [RO]
MEMORY |1, l1 I,=ADD l,..; =ADD |, = o =
opl, R1 R6, RO CoMAC ... | CoMAC ...
EXECUTE |15 [l1 I, = ADD l,+1 =ADD |-
opl, R1 R6, RO
WR.BACK |14 I3 lo l-1 I, = ADD l,.+1 =ADD
opl, R1 R6, RO
1) COMAC instruction stalls due to memory bandwidth conflict.
User’s Manual 4-18 V1.0, 2007-06

CPUSV2_X, V2.2

.. XC2000 Derivatives
@"]Eﬂ System Units (Vol. 1 of 2)

Preliminary Central Processing Unit (CPU)

The DSRAM is a single-port memory with one read/write port. To reduce the number of
bandwidth conflict cases, a Write Back Buffer is implemented. It has three data entries.
Only if the buffer is filled and a read access and a write access occur at the same time,
must the read access be stalled while one of the buffer entries is written back.

Conf |l i ct _DSRAM Bandw dt h:

I, ADD opl, R1

l .1 ADD R6, RO

l .o ADD R6, op2

l .3 MWV R3, R2

I

n+4

Table 4-10 Pipeline Dependencies in Case of Memory Conflicts (DSRAM)

Stage Tn Tn+1 Tn+2 Tn+3 Tn+4l) Tn+5
DECODE |I,=ADD |I,,=ADD |l,,,=ADD |l,,;=MOV |I,, lsa
opl, R1 R6, RO R6, op2 R3, R2
ADDRESS ||, l,=ADD |I,,,=ADD |l,,,=ADD |l,,3=MOV |l ,3=MOV
opl, R1 R6, RO R6, op2 R3, R2 R3, R2
MEMORY |1, l-1 In=ADD |I,,=ADD |I,,,=ADD |I,,,=ADD
opl, R1 R6, RO R6, op2 R6, op2
EXECUTE |l [0 l1 l,=ADD |I,.,,=ADD |-
opl, R1 R6, RO
WR.BACK |14 I3 l2 -1 l,=ADD |I,,,=ADD
opl, R1 R6, RO
WB.Buffer |full full full full full full

1) ADD R6, op2 instruction stalls due to memory bandwidth conflict.

User’s Manual 4-19 V1.0, 2007-06
CPUSV2 X, V2.2

.. XC2000 Derivatives
@'neﬂ System Units (Vol. 1 of 2)

Preliminary Central Processing Unit (CPU)

4.3.4 Pipeline Conflicts Caused by CPU-SFR Updates

CPU-SFRs control the CPU functionality and behavior. Changes and updates of CSFRs
influence the instruction flow in the pipeline. Therefore, special care is required to ensure
that instructions in the pipeline always work with the correct CSFR values. CSFRs are
updated late on the EXECUTE stage of the pipeline. Meanwhile, without conflict
detection, the instructions in the DECODE, ADDRESS, and MEMORY stages would still
work without updated register values. The CPU detects conflict cases and stalls the
pipeline to guarantee a correct execution. For performance reasons, the CPU
differentiates between different classes of CPU-SFRs. The flow of instructions through
the pipeline can be improved by following the given rules used for instruction re-ordering.

There are three classes of CPU-SFRs:

* CSFRs not generating pipeline conflicts (ONES, ZEROS, MCW)
* CSFR result registers updated late in the EXECUTE stage, causing one stall cycle
* CSFRs affecting the whole CPU or the pipeline, causing canceling

CSFR Result Registers

The CSFR result registers MDH, MDL, MSW, MAH, MAL, and MRW of the ALU and
MAC-Unit are updated late in the EXECUTE stage of the pipeline. If an instruction
(except CoOSTORE) accesses explicitly these registers in the memory stage, the value
cannot be forwarded. The instruction must be stalled for one cycle on the MEMORY
stage.

User’s Manual 4-20 V1.0, 2007-06
CPUSV2 X, V2.2

@ineon
-

XC2000 Derivatives
System Units (Vol. 1 of 2)

Preliminary

Conflict_ CSFR Update Stall:

Central Processing Unit (CPU)

I MJL RO, R1
l,+1 MOV R6, MDL
l .+» ADD R6,R1
I n+3 MOV R31 [RO]
I n+4
Table 4-11 Pipeline Dependencies with Result CSFRs (Stall)
Stage Tn Tn+l Tn+2 Tn+3l) Tn+4 Tn+5
DECODE |I,=MUL l,s1=MOV |1,,,=ADD |l,;3=MOV |I,,3=MOV |I .,
RO, R1 R6, MDL R6, R1 R3, [RO] R3, [RO]

ADDRESS ||, ; I, = MUL l,s;=MOV || ,,=ADD |l,,,=ADD |I,,3=MOV

RO, R1 R6, MDL R6, R1 R6, R1 R3, [RO]
MEMORY |1, l1 I, = MUL I+ =MOV || ,,=MOV |I|,.,=ADD

RO, R1 R6, MDL R6, MDL R6, R1
EXECUTE |15 (MY l1 I, = MUL - l,+1 = MOV
RO, R1 R6, MDL
WR.BACK |14 I3 [0 l-1 I, = MUL -
RO, R1

1) Cannot read MDL here.
User’s Manual 4-21 V1.0, 2007-06

CPUSV2_X, V2.2

XC2000 Derivatives
System Units (Vol. 1 of 2)

@ineon
-

Preliminary

Central Processing Unit (CPU)

By reordering instructions, the bubble in the pipeline can be filled with an instruction not
using this resource.

Conflict_CSFR Updat e_Resol ved:

|, ML RO,R1
lnsa MOV R3, [RO]
| ., MOV R6, MDL
| .3 ADD R6, Rl
I n+4
Table 4-12 Pipeline Dependencies with Result CSFRs (No Stall)
Stage Tn Tn+l Tn+2 Tn+3 Tn+41) Tn+5
DECODE |I,=MUL |[l,,;=MOV |l ,,=MOV |l ,3=ADD |l ., lss
RO, R1 R3,[R0] |R6,MDL |R6,R1
ADDRESS ||, l,=MUL |l.,;=MOV |l ,,=MOV |l ,,=ADD |I,,
RO, R1 R3,[R0] |R6,MDL |R6,R1
MEMORY |l |t l,=MUL |l,,;=MOV |l,,,=MOV |l,,;=ADD
RO, R1 R3, [RO] R6, MDL |R6,R1
EXECUTE |l |, |1 l,=MUL |l,,=MOV |I.,,=MOV
RO, R1 R3,[R0O] |R6, MDL
WR.BACK |1, |3 | ot l,=MUL |l,,,=MOV
RO, R1 R3, [RO]
1) MDL can be read now, no stall cycle necessary.
User’s Manual 4-22 V1.0, 2007-06

CPUSV2_X, V2.2

.. XC2000 Derivatives
@'n@ System Units (Vol. 1 of 2)

Preliminary Central Processing Unit (CPU)

CSFRs Affecting the Whole CPU

Some CSFRs affect the whole CPU or the pipeline before the Memory stage. The CPU-
SFRs CPUCON1, CP, SP, STKUN, STKOV, VECSEG, TFR, and PSW affect the overall
CPU function, while the CPU-SFRs IDX0, IDX1, QX1, QX0, DPPO, DPP1, DPP2, and
DPP3 only affect the DECODE, ADDRESS, and MEMORY stage when they are
modified explicitly. In this case the pipeline behavior depends on the instruction and
addressing mode used to modify the CSFR.

In the case of modification of these CSFRs by “POP CSFR” or by instructions using the
reg,#datalé addressing mode, a special mechanism is implemented to improve
performance during the initialization.

For further explanation, the instruction which modifies the CSFR can be called
“instruction_modify_CSFR”. This special case is detected in th