

Description

The YB1220 family is a dual-channel LDO product consisting of 2 independent low noise, low dropout (LDO), linear regulators especially designed for battery-powered equipment and portable device. The regulator achieves a low 300 mV dropout at 200mA 3.3V output and good PSRR of near 50dB at 1K~10KHz frequency.

The YB1220 consumes only 80uA supply current with both regulators enabled and supports different output voltages of full range from 1.2 to 3.6V (pre-set).

The YB1220 is smartly designed to fit in three different pin allocations of SOT23-6 package which offers higher flexibility to users' PCB layout.

Other features of YB1220 include a thermal shutdown circuit and an output short-circuit protection.

Features

- High Accuracy Output Voltage: ± 2%
- Wide Output Voltage Range: 1.2~3.6V
- Each Channel Typical Current: 200mA
- Max. Allowable 300mA Each Channel
- Low Quiescent Current: ~80uA
- Dual Enable Pins Control
- 300mV Dropout at 200mA 3.3V Output
- Stable with 1.0uF Ceramic Capacitor
- Thermal Protection Shutdown
- Output Short-Circuit Current Limit
- Built-In Internal Soft-Start
- Green Package (RoHS) Available

Applications

- Cellular Phone
- White LED Backlighting
- PDA, Notebook, PC
- Digital Camera
- Portable Application
- Wireless LAN
- Battery-Powered Equipment

Typical Application Circuitry

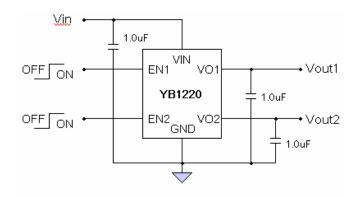


Figure 1: Typical Application Circuit

Pin Configuration

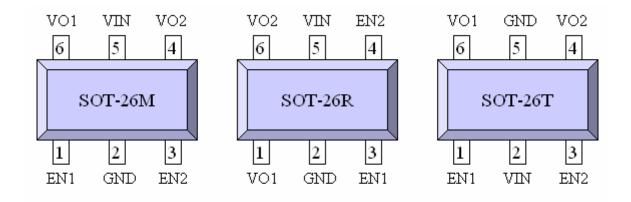
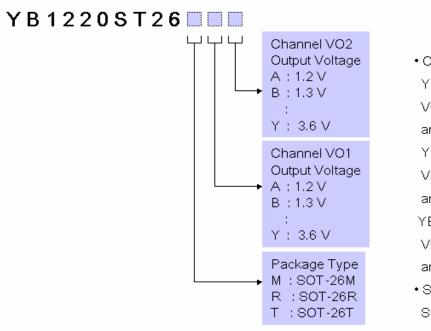


Figure 2 : Pin Configuration

Pin Description

Table 1


Pin	Name	SOT-26M Description				
1	EN1	Pull High to Enable Output VO1				
2	GND	Ground Pin				
3	EN2	Pull High to Enable Output VO2				
4	VO2	Regulated Output Voltage 2				
5	VIN	Unregulated Input Supply				
6	VO1	Regulated Output Voltage 1				

Pin	Name	SOT-26R Description			
1	VO1	Regulated Output Voltage 1			
2	GND	Ground Pin			
3	EN1	Pull High to Enable Output VO1			
4	EN2	Pull High to Enable Output VO2			
5	VIN	Unregulated Input Supply			
6	VO2	Regulated Output Voltage 2			

Pin	Name	SOT-26T Description			
1	EN1	Pull High to Enable Output VO1			
2	VIN	Unregulated Input Supply			
3	EN2	Pull High to Enable Output VO2			
4	VO2	Regulated Output Voltage 2			
5	GND	Ground Pin			
6	VO1	Regulated Output Voltage 1			

Ordering Information

- Order example:
 YB1220ST26MGS for YB1220 of
 VO1 1.8V output, VO2 3.0V output
 and SOT-26M package
 YB1220ST26RVQ for YB1220 of
 VO1 3.3V output, VO2 2.8V output
 and SOT-26R package
 YB1220ST26TSN for YB1220 of
 VO1 3.0V output, VO2 2.5V output
 and SOT-26T package
- Shipping Quantity:
 SOT-26 : 3000 units tape & reel

Marking Information

Absolute Maximum Ratings

Supply Voltage	0.3V to 7.0V
Output Voltage	0.3V to (V _{IN} +0.3V)
Output Short-Circuit Duration	Infinite
Junction Temperature Range	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature	+250°℃

Recommended Operating Conditions

Input Supply Voltage	2V to 6.0V
Operating Temperature	-40°C to +85°C
ESD Susceptibility (HBM)	2KV
ESD Susceptibility (MM)	200V
Thermal Resistance (SOT-26, θ Jc)	140°C/W
Thermal Resistance (SOT-26, θ JA)	250°C/W
Internal Power Dissipation (SOT-26, PD)) 0.4W

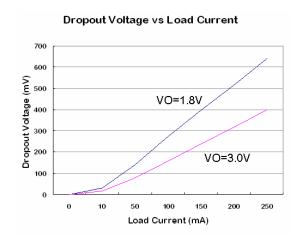
Electrical Characteristics

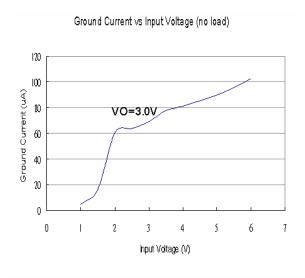
 T_A = 25°C, V_{IN}= Max(VO1,VO2) + 1 V , C_{IN} = C_{OU T1}= Cout2=1.0 μF , EN = VIN, unless otherwise noted Table 2

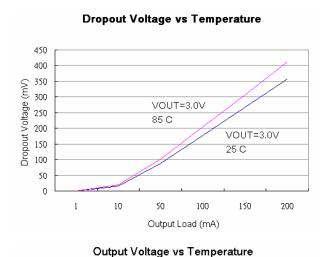
Function Parameter	Conditions	Min	Тур	Max	Units	
Input Voltage Range		2.0		6.0	V	
Output Voltage	Predefined	1.2		3.6	V	
Outrot Valtage Assurance	I _{OUT} = 10mA, VO >= 1.3V	-2.0		+2.0	%	
Output Voltage Accuracy	I _{OUT} = 10mA, VO = 1.2V	0		+4.0	%	
Output Current Limit	Short-Circuit Output Limit		80		mA	
	V _{OUT} = 3.3V, I _{OUT} = 200mA		300		mV	
	V _{OUT} = 2.8V, I _{OUT} = 200mA		380			
Dropout Voltage (Note 1)	V _{OUT} = 2.5V, I _{OUT} = 200mA		420			
	V _{OUT} = 1.8V, I _{OUT} = 200mA		550			
	V _{OUT} = 1.2V, I _{OUT} = 200mA		800			
Ground Current	lout = 0mA		80		μА	
Line Regulation	VIN = Max(VO1,VO2)+1V to 6V, lout =10mA		0.4		%/V	
Load Regulation	lout = 1mA to 200mA		1.0		%	
Shutdown Supply Current	EN1 = EN2 = 0V		~0.01		μА	
	F = 1KHz, lout = 1mA		62		dB	
Ripple Rejection (PSRR)	F = 10KHz, lout = 1mA		50		dB	
	F = 100KHz, lout = 1mA		34		dB	
EN Logic Low Level	VIN = 2.0V to 6V			0.4	V	
EN Logic High Level	VIN = 2.0V to 6V	1.5			V	
EN Input Bias Current	VIN = EN = 6V		0.01		μΑ	
Thermal Shutdown	Shutdown Temperature		160		$^{\circ}\!\mathbb{C}$	
Thermal Hysteresis			20		$^{\circ}\!\mathbb{C}$	

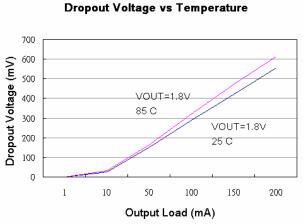
Note 1: The drop out voltage varies depending on output voltage selection

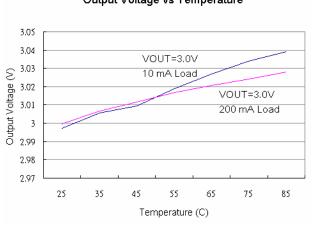
Dropout is defined as VIN-VO when VO is 100mV below VO where VIN=Max(VO1,VO2) for nominal VO.

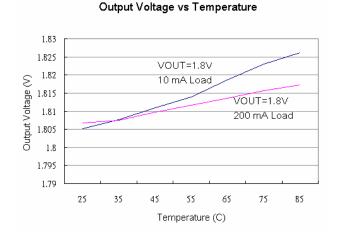

Note 2: Time needed for V_{OUT} to reach 90% of final value.

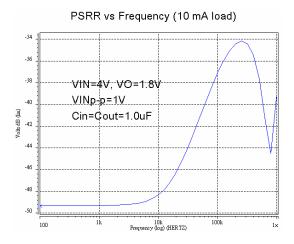

YB1220 MRev.1.1 www.yobon.com.tw 4

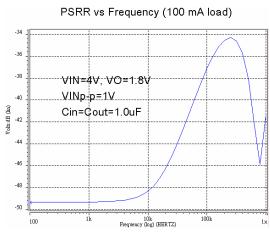


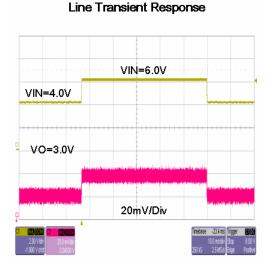

Typical Characteristics

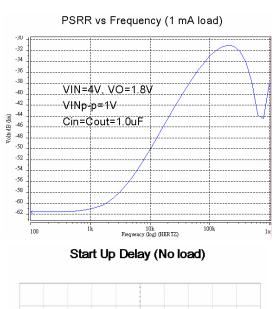

At $T_A=25^{\circ}$ C, VIN=Max(VO1,VO2) +1V, $C_{IN}=C_{OUT}=1.0\mu F$, EN=VIN, unless otherwise noted.

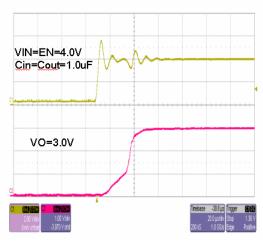


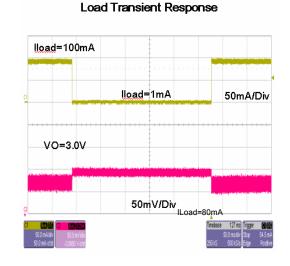







YB1220


Dual Channel 200mA LDO Regulator



Functional Block Diagram

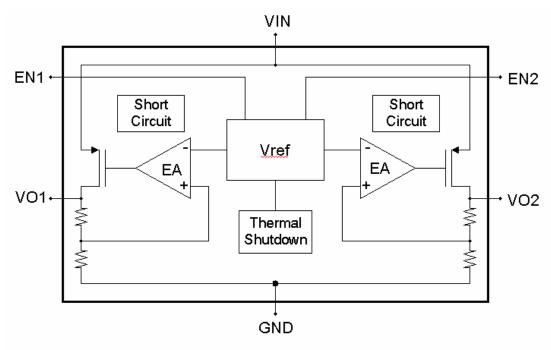


Figure 3: Function Diagram

Functional Description

The YB1220 consists of two low-noise, low-quiescent current, low-dropout linear regulators and is supplied in a small SOT-26 package suitable for portable and battery-powered applications. Each channel can independently supply loads up to 200mA (typical operation, not maximum) and output voltages are preset and ranging from 1.2V to 3.6V.

As shown in the Functional Block Diagram, the YB1220 consists of a single reference generating circuit, two error amplifiers, two P-channel pass transistors, independent internal feedback voltage dividers, two short circuit current limiters and one thermal shutdown protection circuit.

The internal reference is connected to the error amplifier's inverting input. The error amplifier compares this reference with the feedback voltage and amplifies the

difference. If the feedback voltage is lower than the reference voltage, the gate of pass-transistor is pulled low, allowing more current to pass to the output and increasing the output voltage. If the feedback voltage is too high, the gate of pass transistor is pulled high, resulting in less current to the output.

Stability

The YB1220 is a high performance LDO emphasizing stability with low output capacitance. It is able to maintain stability with an output capacitor as low as 1.0uF. The output capacitor can also be increased to optimize performance. The YB1220 will remain stable and in regulation with no load, unlike many other voltage regulators.

Internal P-Channel Pass Transistor

The YB1220 features a low impedance

P-channel MOSFET pass transistor. This provides several advantages over similar designs using a PNP pass transistor, including low operating power and longer battery life. The YB1220 consumes only 90µA around of quiescent current under most conditions.

Output Short-Circuit Current Limit

The YB1220 includes two current limiters, which monitor and control the pass transistor's gate voltage, limiting the output current to about 80mA, for example, in a short-circuit output situation.

Shutdown

The YB1220 also features a low-power shutdown mode. It consists of independent switches to turn off different channel. The two LDOs are allowed to work in both active, only one active or both disabled to keep the lowest current consumption. In the both shutdown mode. the internal functional blocks. such as voltage reference and the error amplifiers, are turned off completely, and the quiescent current is less than 1µA. In the single shutdown mode, the reference circuit and the active side error amplifier remain functional whereas the disabled error amplifier gets into shutdown mode.

Thermal Protection Shutdown

The thermal protection shutdown function protects the device from operating in over temperature condition. When the junction temperature exceeds +160°C, the thermal sensor signals the shutdown logic, turning off the pass transistor and allowing the IC to cool down. The thermal sensor turns the pass transistor on again after the IC's

junction temperature drops to +140°C.

Soft-Start Circuitry

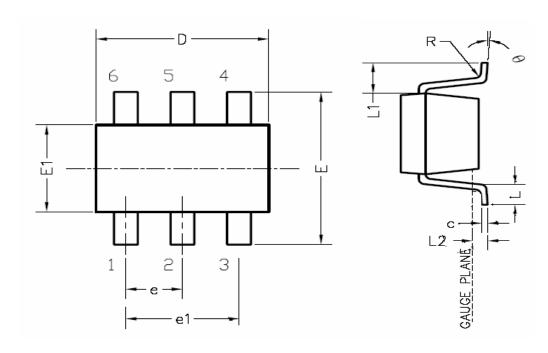
The YB1220 includes a soft-start circuitry to limit inrush current at turn-on. During power up, the output capacitor and output load are charged with a reduced output current. Shortly after the initial power up, the soft-start feature is terminated and normal operation is resumed.

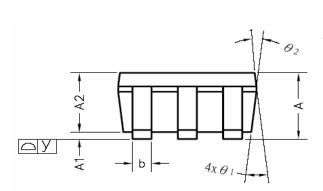
Application Information

Enable/Shutdown

The YB1220 comes with an active-high enable pin that allows the regulator to be enabled. Forcing the enable pin low disables the regulator and puts it into the shutdown mode. This pin cannot be left floating as it may cause an undetermined state.

Input/Output Capacitor


It is recommended to use a 1.0µF capacitor on the YB1220 input and a 1.0µF capacitor on the output. For high regulation performance, larger input capacitor values and lower ESRs provide better noise rejection and line-transient response. The output noise, load-transient response, stability, and power-supply rejection can be improved by using large output capacitors. Low ESR ceramic capacitors provide optimal performance and save space.


Transient Response

The transient response can be improved by increasing the values of the input and output bypass capacitors, and through passive filtering techniques.

SOT-26 Package Information

C	inch			mm			
Symbol	Min	Nom	Max	Min	Nom	Max	
Α	0.041	-	0.053	1.05	-	1.35	
A1	0.002	-	0.006	0.05	-	0.15	
A2	0.039	0.043	0.047	1.00	1.10	1.20	
b	0.012	-	0.020	0.30	-	0.50	
c	0.003	-	0.008	0.08	-	0.20	
D	0.110	0.114	0.118	2.80	2.90	3.00	
E	0.102	0.110	0.118	2.60	2.80	3.00	
E1	0.059	0.063	0.067	1.50	1.60	1.70	
е	0.0374 BSC			0.95 BSC			
e1	(0.0748 BS	C	1.90 BSC			
L	0.014	0.018	0.022	0.35	0.35 0.45 0.55		
L1	0.0236 REF			0.60 REF			
L2	0.0098 BSC			0.25 BSC			
У	-	-	0.004	-	-	0.10	
R	0.004	-		0.10	-	-	
θ	0°	-	8°	0°	-	8°	
θ1	7° NOM			7° NOM			
θ2		5° NOM		5° NOM			