ADT7481
causes a lag in the response of the sensor to a temperature
change.
In the case of the remote sensor, this should not be a
problem, since it will either be a substrate transistor in the
processor or a small package device, such as an SOT−23,
placed in close proximity to it.
The on-chip sensor, however, will often be remote from
the processor and only monitors the general ambient
temperature around the package. In practice, the ADT7481
package will be in electrical, and hence, thermal contact with
a PCB and may also be in a forced airflow. How accurately
the temperature of the board and/or the forced airflow
reflects the temperature to be measured will also affect the
accuracy of the measurement. Self-heating, due to the power
dissipated in the ADT7481 or the remote sensor, causes the
chip temperature of the device (or remote sensor) to rise
above ambient. However, the current forced through the
remote sensor is so small that self-heating is negligible. The
worst-case condition occurs when the ADT7481 is
converting at 64 conversions per second while sinking the
maximum current of 1 mA at the ALERT and THERM
output. In this case, the total power dissipation in the device
is about 4.5 mW. The thermal resistance, qJA, of the
MSOP−10 package is about 142°C/W.
Layout Considerations
Digital boards can be electrically noisy environments, and
the ADT7481 measures very small voltages from the remote
sensor, so care must be taken to minimize noise induced at
the sensor inputs. Take the following precautions:
1. Place the ADT7481 as close as possible to the
remote sensing diode. Provided that the worst
noise sources such as clock generators,
data/address buses, and CRTs are avoided, this
distance can range from 4 to 8 inches.
2. Route the D+ and D− tracks close together, in
parallel, with grounded guard tracks on each side.
To minimize inductance and reduce noise pick up,
a 5 mil track width and spacing is recommended.
Provide a ground plane under the tracks if
possible.
GND
D+
D−
GND
5 MIL
5 MIL
5 MIL
5 MIL
5 MIL
5 MIL
5 MIL
Figure 21. Typical Arrangement of Signal Tracks
3. Try to minimize the number of copper/solder
joints that can cause thermocouple effects. Where
copper/solder joints are used, make sure that they
are in both the D+ and D− path and at the same
temperature.
Thermocouple effects should not be a major
problem as 1°C corresponds to about 200 mV, and
thermocouple voltages are about 3 mV/°C of
temperature difference.
Unless there are two thermocouples with a large
temperature differential between them,
thermocouple voltages should be much less than
200 mV.
4. Place a 0.1 mF bypass capacitor close to the VDD
pin. In extremely noisy environments, an input
filter capacitor may be placed across D+ and D−
close to the ADT7481. This capacitance can affect
the temperature measurement, so care must be
taken to ensure that any capacitance seen at D+
and D− is a maximum of 1,000 pF. This maximum
value includes the filter capacitance, plus any
cable or stray capacitance between the pins and the
sensor diode.
5. If the distance to the remote sensor is more than 8
inches, the use of twisted pair cable is
recommended. A total of 6 feet to 12 feet of cable
is needed.
For really long distances (up to 100 feet), use
shielded twisted pair, such as Belden No. 8451
microphone cable. Connect the twisted pair to D+
and D− and the shield to GND close to the
ADT7481. Leave the remote end of the shield
unconnected to avoid ground loops.
Because the measurement technique uses switched
current sources, excessive cable or filter capacitance can
affect the measurement. When using long cables, the filter
capacitance can be reduced or removed.
Application Circuit
Figure 22 shows a typical application circuit for the
ADT7481, using discrete sensor transistors. The pullups on
SCLK, SDATA, and ALERT are required only if they are not
already provided elsewhere in the system.
The SCLK and SDATA pins of the ADT7481 can be
interfaced directly to the SMBus of an I/O controller, such
as the Intel® 820 chipset.
http://onsemi.com
18