

Bi-directional TVS Diode Array

FEATURES

- Meet IEC61000-4-2 (ESD) ±15kV (air), ±8kV (contact)
- Meet IEC61000-4-4 (EFT) rating. 40A (5/50ns)
- Protects one Bi-directional I/O line
- Moisture sensitivity level: level 1, per J-STD-020
- Compliant to RoHS directive 2011/65/EU and in accordance to WEEE 2002/96/EC

KEY PARAMETERS			
VALUE	UNIT		
500	W		
5	Α		
24	>		
40	V		
SOD-323			
	500 5 24 40		

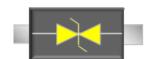
APPLICATIONS

- Cell Phone Handsets and Accessories
- Notebooks, Desktops, and Servers
- · Keypads, Side Keys
- Portable Instrumentation
- Microprocessor Based Equipment
- Peripherals

• Case: SOD-323

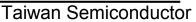
• Molding compound meets UL 94 V-0 flammability rating

• Terminal: Matte tin plated leads, solderable per J-STD-002


• Meet JESD 201 class 1A whisker test

• Weight: 4.85 mg (approximately)

• Marking code on the device: 2H



ABSOLUTE MAXIMUM RATINGS (T _A = 25°C unless otherwise noted)			
PARAMETER	SYMBOL	TESDC24V	UNIT
Rated random recurring peak Impulse power dissipation (tp=8/20µs waveform)	P _{PPM}	500	W
ESD per IEC 61000-4-2 (Air) ESD per IEC 61000-4-2 (Contact)	V _{ESD}	± 15 ± 8	KV
Junction temperature range	TJ	-55 to +150	°C
Storage temperature range	T _{STG}	-55 to +150	°C

1

ELECTRICAL SPECIFICATIONS (T _A = 25°C unless otherwise noted)						
PARAMETER	CONDITIONS	SYMBOL	MIN	TYP	MAX	UNIT
Reverse breakdown voltage (1)	I _R = 1 mA	$V_{(BR)}$	26.7	-	-	V
Rated working standoff voltage		V_{WM}	-	-	24	V
Reverse current (1)	V _R = 24 V	I _R	-	-	1	μA
Clamping voltage (2)	I _{PP} = 5 A	V _C	-	-	40	V
Clamping voltage (2)	I _{PP} = 17 A	V _C	-	-	52	V
Junction capacitance	1 MHz, V _R =0V	CJ	-	50	-	pF

Notes:

- 1. Pulse test with PW=30 ms
- 2. tp=8/20µs waveform

ORDERING INFORMATION			
ORDERING CODE	PACKAGE	PACKING	
TESDC24V RR	SOD-323	3K / 7" Reel	
TESDC24V RRG	SOD-323	3K / 7" Reel	

Note: "G" means green compound (halogen)

CHARACTERISTICS CURVES

 $(T_A = 25^{\circ}C \text{ unless otherwise noted})$

Fig. 1 Non-Repetitive Peak Pulse Power

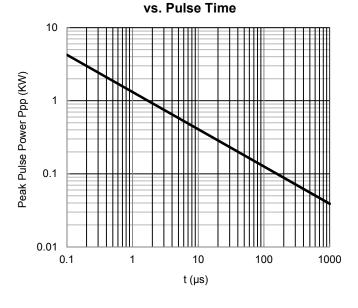


Fig. 2 8/20µs pulse waveform according to IEC 61000-4-5

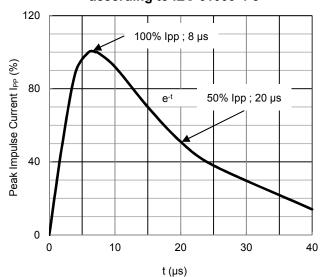


Fig. 3 Admissible Power Dissipation Curve

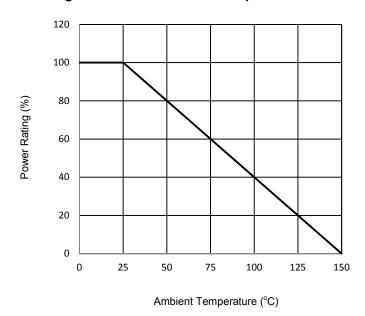
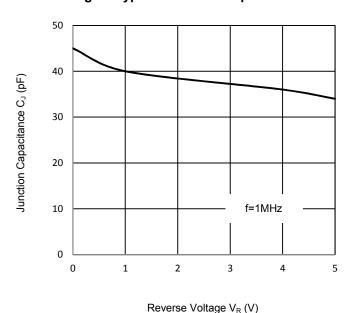
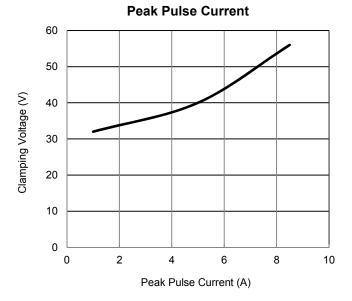
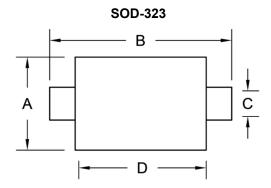
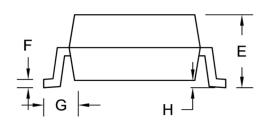



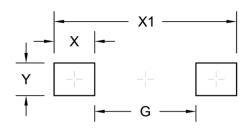
Fig. 4 Typical Junction Capacitance



CHARACTERISTICS CURVES


 $(T_A = 25^{\circ}C \text{ unless otherwise noted})$


Fig. 5 Clamping Voltage vs.


PACKAGE OUTLINE DIMENSION

DIM.	Unit (mm)		Unit (inch)
Dilvi.	Min.	Max.	Min.	Max.
Α	1.150	1.400	0.045	0.055
В	2.300	2.700	0.091	0.106
С	0.250	0.450	0.010	0.018
D	1.600	1.800	0.063	0.071
E	0.800	1.000	0.031	0.039
F	0.050	0.177	0.002	0.007
G	0.475 (Ref.)		0.019	(Ref.)
Н	-	0.100	-	0.004

SUGGEST PAD LAYOUT

Symbol	Unit (mm)	Unit (inch)
G	1.52	0.060
X	0.61	0.024
X1	2.74	0.108
Y	0.49	0.019

Note: The suggested land pattern dimensions have been provided for reference only, as actual pad layouts may vary depending on application.

APPLICATION INFROMATION

- Designed to protect one data, I/O, or power supply line
- Designed to protect sensitive electronics from damage or latch-up due to ESD
- Designed to replace multilayer varistors (MLVs) in portable applications
- Offers superior electrical characteristics such as lower clamping voltage and no device degradation when compared to MLVs
- The combination of small size and high ESD surge capability makes them ideal for use in portable applications

CIRCUIT BOARD LAYOUT RECOMMENDATIONS

- Good circuit board layout is critical for the suppression of ESD induced transients
- Place the ESD Protection Diode near the input terminals or connectors to restrict transient coupling
- Minimize the path length between the ESD Protection Diode and the protected line
- Minimize all conductive loops including power and ground loops
- The ESD transient return path to ground should be kept as short as possible
- Never run critical signals near board edges
- Use ground planes whenever possible

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.