RT9245
Current Balance Function
30
IL3
25
IL4
20
IL1
IL2
15
10
5
0
0
20
40
60
80
100
IOUT (A)
Figure 12
L
DCR
ESR
+
-
VCSP
VCSN
C
GMx
RCSN1
Ix
RCSN2
Figure13. Application circuit of GM
For load line design, with application circuit in Figure 13,
it can eliminate the dead zone of load line at light loads.
VCSP = VOUT +IL x DCR
if GM holds input voltages equal, then
VCSP = VCSN
IX
=
VCSN
RCSN2
+ IL × DCR
RCSN1
= VOUT + IL × DCR + IL × DCR
RCSN2
RCSN1
= VOUT + IL × DCR + IL × DCR
RCSN2
RCSN2
RCSN1
For the lack of sinking capability of GM, RCSN2 should be
small enough to compensate the negative inductor valley
current especially at light loads.
VCSN ≥ IL × DCR
RCSN2
RCSN1
www.richtek.com
14
Assume the negative inductor valley current is −5A at no
load, then for
RCSN1 = 330Ω, RADJ = 160Ω, VOUT = 1.300
1.3V −5A × 1mΩ
≥
RCSN2
330Ω
RCSN2 ≤ 85.8kΩ
Choose RCSN2 = 82kΩ
Load Line without dead zone at light loads
1.31
1.3
1.29
1.28
1.27
1.26
RCSN2 open
1.25
RCSN2 = 82k
1.24
1.23
0
5
10
15
20
25
IOUT (A)
Figure 14
VID on the Fly
With external pull up resistors tied to VID pins, RT9245
converters different VID codes from CPU into output
voltage. Figure 12 and Figure 13 show the waveforms of
VID on the fly function.
VID on the Fly (Falling)
PWM
VCORE
VFB
CH1:(5V/Div)
CH2:(500mV/Div)
CH3:(500mV/Div)
CH4:(1V/Div)
VID125
VDAC = 1.500, IOUT = 5A
Time (25μs/Div)
Figure 15
DS9245-06 March 2007