DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

MPC8349VVAGDB View Datasheet(PDF) - Freescale Semiconductor

Part Name
Description
Manufacturer
MPC8349VVAGDB Datasheet PDF : 87 Pages
First Prev 11 12 13 14 15 16 17 18 19 20 Next Last
DDR and DDR2 SDRAM
Table 12. DDR2 SDRAM DC Electrical Characteristics for GVDD(typ) = 1.8 V (continued)
Output low current (VOUT = 0.280 V)
IOL
13.4
mA
Notes:
1. GVDD is expected to be within 50 mV of the DRAM GVDD at all times.
2. MVREF is expected to equal 0.5 × GVDD, and to track GVDD DC variations as measured at the receiver. Peak-to-peak noise
on MVREF cannot exceed ±2% of the DC value.
3. VTT is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to equal
MVREF. This rail should track variations in the DC level of MVREF.
4. Output leakage is measured with all outputs disabled, 0 V VOUT GVDD.
Table 13 provides the DDR2 capacitance when GVDD(typ) = 1.8 V.
Table 13. DDR2 SDRAM Capacitance for GVDD(typ) = 1.8 V
Parameter/Condition
Symbol
Min
Max
Unit Notes
Input/output capacitance: DQ, DQS, DQS
CIO
6
8
pF
1
Delta input/output capacitance: DQ, DQS, DQS
CDIO
0.5
pF
1
Note:
1. This parameter is sampled. GVDD = 1.8 V ± 0.090 V, f = 1 MHz, TA = 25°C, VOUT = GVDD/2, VOUT (peak-to-peak) = 0.2 V.
Table 14 provides the recommended operating conditions for the DDR SDRAM component(s) when
GVDD(typ) = 2.5 V.
Table 14. DDR SDRAM DC Electrical Characteristics for GVDD(typ) = 2.5 V
Parameter/Condition
Symbol
Min
Max
Unit
Notes
I/O supply voltage
GVDD
2.375
2.625
V
1
I/O reference voltage
MVREF
0.49 × GVDD
0.51 × GVDD
V
2
I/O termination voltage
VTT
MVREF – 0.04
MVREF + 0.04
V
3
Input high voltage
VIH
MVREF + 0.18
GVDD + 0.3
V
Input low voltage
VIL
–0.3
MVREF – 0.18
V
Output leakage current
IOZ
–9.9
–9.9
μA
4
Output high current (VOUT = 1.95 V)
IOH
–15.2
mA
Output low current (VOUT = 0.35 V)
IOL
15.2
mA
Notes:
1. GVDD is expected to be within 50 mV of the DRAM GVDD at all times.
2. MVREF is expected to be equal to 0.5 × GVDD, and to track GVDD DC variations as measured at the receiver. Peak-to-peak
noise on MVREF may not exceed ±2% of the DC value.
3. VTT is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be
equal to MVREF. This rail should track variations in the DC level of MVREF.
4. Output leakage is measured with all outputs disabled, 0 V VOUT GVDD.
MPC8349EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 13
16
Freescale Semiconductor

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]